【題目】已知在平面直角坐標(biāo)系內(nèi),曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)把曲線和直線化為直角坐標(biāo)方程;

2)過(guò)原點(diǎn)引一條射線分別交曲線和直線,兩點(diǎn),射線上另有一點(diǎn)滿足,求點(diǎn)的軌跡方程(寫(xiě)成直角坐標(biāo)形式的普通方程).

【答案】1;(2(除去原點(diǎn)).

【解析】

1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.

2)利用極徑的應(yīng)用建立等量關(guān)系,進(jìn)一步求出直角坐標(biāo)方程.

解:(1)由曲線的參數(shù)方程得:,

所以曲線的直角坐標(biāo)方程為

又由,,

將極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化公式,代入上式,得

直線的直角坐標(biāo)方程為

2)在極坐標(biāo)系內(nèi),設(shè),,,則

,

得,,即,

所以

從而得,且,

轉(zhuǎn)化為直角坐標(biāo)方程為,

所以點(diǎn)的軌跡方程為(除去原點(diǎn)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)有兩個(gè)極值點(diǎn),試求實(shí)數(shù)的取值范圍;

2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)是焦距的2倍,且過(guò)點(diǎn)

1)求橢圓C的方程;

2)設(shè)為橢圓C上的動(dòng)點(diǎn),F為橢圓C的右焦點(diǎn),A、B分別為橢圓C的左、右頂點(diǎn),點(diǎn)滿足

①證明:為定值;

②設(shè)Q是直線上的動(dòng)點(diǎn),直線AQBQ分別另交橢圓CM、N兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系內(nèi),曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)把曲線和直線化為直角坐標(biāo)方程;

2)過(guò)原點(diǎn)引一條射線分別交曲線和直線,兩點(diǎn),射線上另有一點(diǎn)滿足,求點(diǎn)的軌跡方程(寫(xiě)成直角坐標(biāo)形式的普通方程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年,河南省鄭州市的房?jī)r(jià)依舊是鄭州市民關(guān)心的話題.總體來(lái)說(shuō),二手房房?jī)r(jià)有所下降,相比二手房而言,新房市場(chǎng)依然強(qiáng)勁,價(jià)格持續(xù)升高.已知銷(xiāo)售人員主要靠售房提成領(lǐng)取工資.現(xiàn)統(tǒng)計(jì)鄭州市某新房銷(xiāo)售人員一年的工資情況的結(jié)果如圖所示,若近幾年來(lái)該銷(xiāo)售人員每年的工資總體情況基本穩(wěn)定,則下列說(shuō)法正確的是(

A.月工資增長(zhǎng)率最高的為8月份

B.該銷(xiāo)售人員一年有6個(gè)月的工資超過(guò)4000

C.由此圖可以估計(jì),該銷(xiāo)售人員20206,7,8月的平均工資將會(huì)超過(guò)5000

D.該銷(xiāo)售人員這一年中的最低月工資為1900

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(Ⅰ)寫(xiě)出曲線C的直角坐標(biāo)方程;

(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),且AB的長(zhǎng)度為2,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖和90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布圖(90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生),則下列結(jié)論中不一定正確的是(

整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖 90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布圖

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

C.互聯(lián)網(wǎng)行業(yè)中從事設(shè)計(jì)崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事市場(chǎng)崗位的90后人數(shù)不足總?cè)藬?shù)的10%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若處的切線方程為,求實(shí)數(shù)的值;

2)證明:當(dāng)時(shí),上有兩個(gè)極值點(diǎn);

3)設(shè),若上是單調(diào)減函數(shù)(為自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形,且ABDC,平面平面

(Ⅰ)證明:平面平面

(Ⅱ)若,,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案