【題目】已知函數(shù).

1)若函數(shù)有兩個(gè)極值點(diǎn),試求實(shí)數(shù)的取值范圍;

2)若,求證:.

【答案】1;(2)證明見(jiàn)解析.

【解析】

1)求函數(shù)導(dǎo)數(shù),有2個(gè)極值點(diǎn)轉(zhuǎn)化為方程有兩解,利用導(dǎo)數(shù)分析,得函數(shù)大致形狀,即可求解;

2)不妨令,利用單調(diào)性知,構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最小值即可得證.

1)∵,

.

,

函數(shù)有兩個(gè)極值點(diǎn),即方程有兩個(gè)不相等的根,

顯然時(shí),方程不成立,即不是方程的根,

所以原方程有兩個(gè)不相等的根轉(zhuǎn)化為有兩個(gè)不相等的根,

不妨令.

,

遞減,在遞增,,且時(shí),.

∵方程有兩個(gè)不等根,

圖象與圖象有兩個(gè)不同交點(diǎn),

∴只需滿足

.

2)不妨令,

遞減.

,不妨令:,

.

,

,

遞減,在遞增.

,

,

遞增.

當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直四棱柱中,四邊形為平行四邊形,的中點(diǎn),.

1)求證:平面平面;

2)求直線與直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.

(1)證明:ADPB.

(2)若PB=AB=PA=2,求三棱錐P-BCD的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體的棱長(zhǎng)為2分別為的中點(diǎn),則以下說(shuō)法錯(cuò)誤的是(

A.平面截正方體所的截面周長(zhǎng)為

B.存在上一點(diǎn)使得平面

C.三棱錐體積相等

D.存在上一點(diǎn)使得平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),是橢圓的左,右焦點(diǎn),橢圓上一點(diǎn)滿足軸,,.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)的直線交橢圓兩點(diǎn),當(dāng)的內(nèi)切圓面積最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)表示中的最大值,若函數(shù)只有一個(gè)零點(diǎn),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,平面,,中點(diǎn),中點(diǎn),是線段上一動(dòng)點(diǎn).

1)當(dāng)中點(diǎn)時(shí),求證:平面平面;

2)當(dāng)平面時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是某縣參加2007年高考的學(xué)生身高條形統(tǒng)計(jì)圖,從左到右的各條形圖表示學(xué)生人數(shù)依次記為A1A2、…A10(如A2表示身高(單位:cm)在[150,155內(nèi)的人數(shù)].圖2是統(tǒng)計(jì)圖1中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個(gè)算法流程圖.現(xiàn)要統(tǒng)計(jì)身高在160~180cm(含160cm,不含180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是

A.i<6B.i<7C.i<8D.i<9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系內(nèi),曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)把曲線和直線化為直角坐標(biāo)方程;

2)過(guò)原點(diǎn)引一條射線分別交曲線和直線,兩點(diǎn),射線上另有一點(diǎn)滿足,求點(diǎn)的軌跡方程(寫成直角坐標(biāo)形式的普通方程).

查看答案和解析>>

同步練習(xí)冊(cè)答案