【題目】已知橢圓的長(zhǎng)軸長(zhǎng)是焦距的2倍,且過(guò)點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)為橢圓C上的動(dòng)點(diǎn),F為橢圓C的右焦點(diǎn),A、B分別為橢圓C的左、右頂點(diǎn),點(diǎn)滿足.
①證明:為定值;
②設(shè)Q是直線上的動(dòng)點(diǎn),直線AQ、BQ分別另交橢圓C于M、N兩點(diǎn),求的最小值.
【答案】(1)(2)①見解析②3
【解析】
(1)由題意可得又過(guò)一點(diǎn),及,,之間的關(guān)系求出,,進(jìn)而求出橢圓的方程;
(2)①由(1)可得右焦點(diǎn),,的坐標(biāo),求出向量的模,及向量的?勺C得為定值;
②由題意方程可得為右準(zhǔn)線,設(shè)的坐標(biāo),求出直線,的直線與橢圓聯(lián)立求出,的橫坐標(biāo),再由橢圓的性質(zhì)到焦點(diǎn)的距離與到準(zhǔn)線的距離的比為離心率可得用,的橫坐標(biāo)表示,由均值不等式可得其最小值.
解:(1)由題意可得,,,
解得:,,
所以橢圓的方程為:;
(2)由(1)可得,,,
①因?yàn)?/span>為橢圓C上的動(dòng)點(diǎn),
點(diǎn)滿足,所以;
所以
,
所以:,
所以可證為定值2.
②由題意設(shè),所以,
所以直線的方程為:,
聯(lián)立直線與橢圓的方程:
整理可得:,
所以,所以,
同理,所以直線的方程:,
整理可得:,
所以,所以,
因?yàn)?/span>為右準(zhǔn)線,
所以由到焦點(diǎn)的距離與到準(zhǔn)線的距離的比為離心率,
可得:
,
當(dāng)且僅當(dāng),即時(shí)取等號(hào).
所以的最小值為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.
(1)證明:AD⊥PB.
(2)若PB=,AB=PA=2,求三棱錐P-BCD的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,平面,,,是中點(diǎn),是中點(diǎn),是線段上一動(dòng)點(diǎn).
(1)當(dāng)為中點(diǎn)時(shí),求證:平面平面;
(2)當(dāng)平面時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是某縣參加2007年高考的學(xué)生身高條形統(tǒng)計(jì)圖,從左到右的各條形圖表示學(xué)生人數(shù)依次記為A1、A2、…A10(如A2表示身高(單位:cm)在[150,155內(nèi)的人數(shù)].圖2是統(tǒng)計(jì)圖1中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個(gè)算法流程圖.現(xiàn)要統(tǒng)計(jì)身高在160~180cm(含160cm,不含180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是
A.i<6B.i<7C.i<8D.i<9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情期間,為了更好地了解學(xué)生線上學(xué)習(xí)的情況,某興趣小組在網(wǎng)上隨機(jī)抽取了100名學(xué)生對(duì)其線上學(xué)習(xí)滿意情況進(jìn)行調(diào)查,其中男女比例為2∶3,其中男生有24人滿意,女生有12人不滿意.
(1)完成列聯(lián)表,并回答是否有95%把握認(rèn)為“線上學(xué)習(xí)是否滿意與性別有關(guān)”
滿意 | 不滿意 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
(2)從對(duì)線上學(xué)習(xí)滿意的學(xué)生中,利用分層抽樣抽取6名學(xué)生,再在6名學(xué)生中抽取3名,記抽到的女生人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
.072 | 2.706 | 3.842 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)證明:當(dāng)時(shí),方程在區(qū)間上只有一個(gè)解;
(Ⅱ)設(shè),其中.若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年,河南省鄭州市的房?jī)r(jià)依舊是鄭州市民關(guān)心的話題.總體來(lái)說(shuō),二手房房?jī)r(jià)有所下降,相比二手房而言,新房市場(chǎng)依然強(qiáng)勁,價(jià)格持續(xù)升高.已知銷售人員主要靠售房提成領(lǐng)取工資.現(xiàn)統(tǒng)計(jì)鄭州市某新房銷售人員一年的工資情況的結(jié)果如圖所示,若近幾年來(lái)該銷售人員每年的工資總體情況基本穩(wěn)定,則下列說(shuō)法正確的是( )
A.月工資增長(zhǎng)率最高的為8月份
B.該銷售人員一年有6個(gè)月的工資超過(guò)4000元
C.由此圖可以估計(jì),該銷售人員2020年6,7,8月的平均工資將會(huì)超過(guò)5000元
D.該銷售人員這一年中的最低月工資為1900元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系內(nèi),曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)把曲線和直線化為直角坐標(biāo)方程;
(2)過(guò)原點(diǎn)引一條射線分別交曲線和直線于,兩點(diǎn),射線上另有一點(diǎn)滿足,求點(diǎn)的軌跡方程(寫成直角坐標(biāo)形式的普通方程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南北朝時(shí)期的數(shù)學(xué)家祖暅提出了計(jì)算體積的祖暅原理:“冪勢(shì)既同,則積不容異。”意思是:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等.已知曲線,直線為曲線在點(diǎn)處的切線.如圖所示,陰影部分為曲線、直線以及軸所圍成的平面圖形,記該平面圖形繞軸旋轉(zhuǎn)一周所得的幾何體為.給出以下四個(gè)幾何體:
① ② ③ ④
圖①是底面直徑和高均為的圓錐;
圖②是將底面直徑和高均為的圓柱挖掉一個(gè)與圓柱同底等高的倒置圓錐得到的幾何體;
圖③是底面邊長(zhǎng)和高均為的正四棱錐;
圖④是將上底面直徑為,下底面直徑為,高為的圓臺(tái)挖掉一個(gè)底面直徑為,高為的倒置圓錐得到的幾何體.
根據(jù)祖暅原理,以上四個(gè)幾何體中與的體積相等的是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com