如果函數(shù)y=(2a-1)x+b在R上是增函數(shù),則a的取值范圍是
 
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:求出函數(shù)的導(dǎo)數(shù),解f′(x)>0,求出即可.
解答: 解:∵f(x)=(2a-1)x+b在R內(nèi)是增函數(shù),
∴f′(x)=2a-1>0,解得:a>
1
2
,
故a的取值范圍是(
1
2
,+∞),
故答案為:(
1
2
,+∞).
點(diǎn)評:本題考查了函數(shù)的單調(diào)性,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-mx+m-1.
(1)當(dāng)x∈[2,4]時(shí),f(x)≥-1恒成立,求實(shí)數(shù)m的取值范圍;
(2)是否存在整數(shù)a,b(a<b),使得關(guān)于x的不等式a≤f(x)≤b的解集為{x|a≤x≤b}?若存在,求出a,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某海濱浴場的岸邊可近似地看作直線a,救生員現(xiàn)在岸邊的A處,發(fā)現(xiàn)海中的B處有人求救,救生員沒有直接從A處游向B處,而是在AD(D為海岸邊距B最近的點(diǎn))上找到一點(diǎn)C,沿岸邊從A處跑到C處,然后游到B處,若救生員在岸邊的行進(jìn)速度為4(m/s),在海水中的行進(jìn)速度為2(m/s),∠BAD=45°,BD=200(m),救生員從A到C再到B的時(shí)間為y(s).
(1)按下列要求寫出函數(shù)關(guān)系式:
①設(shè)∠BCD=θ(rad),將y表示成θ的函數(shù)關(guān)系式;
②設(shè)CD=x(m),將y表示成x的函數(shù)關(guān)系式;
(2)請你選用(1)中的一個(gè)函數(shù)關(guān)系式,確定C點(diǎn)的位置,使救生員從A到C再到B的時(shí)間最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-x+
1
2
的定義域?yàn)閇n,n+1],n∈N*,則f(x)的值域中所含整數(shù)的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)有兩個(gè)零點(diǎn)0和-2,且f(x)最小值是-1,函數(shù)g(x)與f(x)的圖象關(guān)于原點(diǎn)對稱.
(Ⅰ)求f(x)和g(x)的解析式;
(Ⅱ)若h(x)滿足h(x+2)=h(x),且0≤x≤2時(shí),h(x)=g(x),若方程h(x)=1的所有正根從小到大依次排列所得數(shù)列記為{xn},求數(shù)列{xn}的前10項(xiàng)和S10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=6-ax-2(a>0且a≠1)的圖象恒過點(diǎn)P,則點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時(shí)f(x)=lgx,則f(-100)的值是( 。
A、-2
B、
1
2
C、2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中sinA:sinB:sinC=5:
31
:6,則△ABC最大角與最小角的和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x||x|<3},N={x|log2x>1},則M∩N=
 

查看答案和解析>>

同步練習(xí)冊答案