(理)已知隨機(jī)變量ξ的分布列如表,若Eξ=3,則Dξ=
 

x 1 2 3 4
P(ξ=x) n 0.2 0.3 m
考點:離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計
分析:利用已知條件先列出方程組求出m=0.4,n=0.1,由此能求出Dξ.
解答: 解:∵Eξ=3,∴由概率分布表知:
n+0.2+0.3+m=1
n+2×0.2+3×0.3+4m=3
,
解得m=0.4,n=0.1,
Dξ=(1-3)2•0.1+(2-3)2•0.2+(3-3)2•0.3+(4-3)2•0.4=1.
故答案為:1.
點評:本題考查離散型隨機(jī)變量的概率分布列的求法,是基礎(chǔ)題,解題時要注意方差公式的計算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個內(nèi)角A,B,C成等差數(shù)列且所對的邊分別為a,b,c.
(1)求B;
(2)若a=
3
sinA+cosA,求當(dāng)a取最大值時A,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx,g(x)=
1
2
x2
+
1
2

(Ⅰ)設(shè)F(x)=f(x)+g(x),求函數(shù)F(x)的圖象在x=1處的切線方程:
(Ⅱ)求證:ef(x)≥g(x)對任意的x∈(0,+∞)恒成立;
(Ⅲ)若a,b,c∈R+,且a2+b2+c2=3,求證:
(b+c)2
aa+1
+
(c+a)2
bb+1
+
(a+b)2
cc+1
≤6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
a1=2
a2=8
an+1+an-1=can,(n≥2).
(c為常數(shù),n∈N*
(1)當(dāng)c=2時,求an
(2)當(dāng)c=1時,求a2014的值;
(3)問:使an+3=an恒成立的常數(shù)c是否存在?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(3,1)是拋物線y2=2px的一條弦AB的中點,且這條弦所在直線的斜率為2,(1)求拋物線方程;(2)求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-5x+4(l≤x≤8),若從區(qū)間[1,8]內(nèi)隨機(jī)選取一個實數(shù)x0,則所選取的實數(shù)x0滿足f(x0)≤0的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若
S5
15
-
S3
9
=1,則公差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,(ax-1)8的二項展開式中含x3項的系數(shù)為7,則
lim
n→∞
(a+a2+…+an)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四個冪函數(shù)y=xa;y=xb;y=xc;y=xd在同一坐標(biāo)系中的圖象如圖所示,則a,b,c,d,0,1由大到小的順序是
 

查看答案和解析>>

同步練習(xí)冊答案