【題目】如圖,在五棱錐P-ABCDE中,△ABE是等邊三角形,四邊形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中點,點P在底面的射影落在線段AG上.
(Ⅰ)求證:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC=,側(cè)棱PA與底面ABCDE所成角為45°,S△PBE=,點M在側(cè)棱PC上,CM=2MP,求二面角M-AB-D的余弦值.
【答案】(I)見解析; (II).
【解析】
(Ⅰ)由題易證BE⊥PO,BE⊥AG,可得BE⊥平面PAG,既而證得平面PBE⊥平面APG;
(II)建立空間直角坐標(biāo)系,分別求出平面MAB和平面ABD的法向量,再根據(jù)二面角的公式求得二面角M-AB-D的余弦值即可.
(Ⅰ)取BE中點F,連接AF,GF,由題意得A,F(xiàn),G三點共線,
過點P作PO⊥AG于O,則PO⊥底面ABCDE
∵BE平面ABCDE,∴BE⊥PO,
∵△ABE是等邊三角形,
∴BE⊥AG
∵AG∩PO=O,∴BE⊥平面PAG,
∵BE平面PBE,
∴平面PBE⊥平面APG.
(II)連接PF,∵
又∵∠PAF=45°,∴PF⊥AF,∴PF⊥AF,
∴PF⊥底面ABCDE.
∴O點與F點重合.
如圖,以O(shè)為原點,分別以的方向為x軸,y軸,z軸正方向,建立空間直角坐標(biāo)系.
底面ABCDE的一個法向量
∵,∴,
設(shè)平面ABM的法向量,
∵,
∴,∴,
∴,取則,
∴,
∵二面角的法向量分別指向二面角的內(nèi)外,<>即為二面角的平面角,
∴cos<>==.
∴二面角M-AB-D的余弦值為.
)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左右焦點分別為、,左右頂點分別是、,長軸長為,是以原點為圓心,為半徑的圓的任一條直徑,四邊形的面積最大值為.
(1)求橢圓的方程;
(2)不經(jīng)過原點的直線:與橢圓交于、兩點,
①若直線與的斜率分別為,,且,求證:直線過定點,并求出該定點的坐標(biāo);
②若直線的斜率是直線、斜率的等比中項,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓截直線所得的線段的長度為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點,點是橢圓上的點,是坐標(biāo)原點,若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,DC⊥平面ABC,,,,P、Q分別為AE,AB的中點.
(1)證明:平面.
(2)求異面直線與所成角的余弦值;
(3)求平面與平面所成銳二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為中心,以坐標(biāo)軸為對稱軸的幫圓C經(jīng)過點M(2,1),N.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)經(jīng)過點M作傾斜角互補(bǔ)的兩條直線,分別與橢圓C相交于異于M點的A,B兩點,當(dāng)△AMB面積取得最大值時,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點分別在軸和軸上運(yùn)動,且,若動點
滿足,動點的軌跡為.
(1)求的方程;
(2)過點作動直線的平行線交軌跡于兩點,則是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)橢圓的左焦點為,左準(zhǔn)線為為橢圓上任意一點,直線,垂足為,直線與交于點.
(1)若,且,直線的方程為.①求橢圓的方程;②是否存在點,使得?若存在,求出點的坐標(biāo);若不存在,說明理由.
(2)設(shè)直線與圓交于兩點,求證:直線均與圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線的焦點F在y軸上,其準(zhǔn)線與雙曲線的下準(zhǔn)線重合.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)設(shè)A(,)(>0)是拋物線上一點,且AF=,B是拋物線的準(zhǔn)線與y軸的交點.過點A作拋物線的切線l,過點B作l的平行線l′,直線l′與拋物線交于點M,N,求△AMN的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}為等差數(shù)列,a7﹣a2=10,且a1,a6,a21依次成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn,數(shù)列{bn}的前n項和為Sn,若Sn,求n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com