【題目】已知數(shù)列{an}為等差數(shù)列,a7a210,且a1,a6,a21依次成等比數(shù)列.

1)求數(shù)列{an}的通項公式;

2)設bn,數(shù)列{bn}的前n項和為Sn,若Sn,求n的值.

【答案】1an2n+3210

【解析】

1)設等差數(shù)列的公差為d,運用等差數(shù)列的通項公式和等比數(shù)列中項性質,解方程可得首項和公差,即可得到所求通項公式;

2)求得bn),運用裂項相消求和可得Sn,解方程可得n

解:(1)設數(shù)列{an}為公差為d的等差數(shù)列,

a7a210,即5d10,即d2,

a1a6,a21依次成等比數(shù)列,可得

a62a1a21,即(a1+102a1a1+40),

解得a15,

an5+2n1)=2n+3;

2bn),

即有前n項和為Sn

,

Sn,可得5n4n+10,

解得n10

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在五棱錐P-ABCDE中,△ABE是等邊三角形,四邊形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中點,點P在底面的射影落在線段AG上.

(Ⅰ)求證:平面PBE⊥平面APG;

(Ⅱ)已知AB=2,BC=,側棱PA與底面ABCDE所成角為45°,S△PBE=,點M在側棱PC上,CM=2MP,求二面角M-AB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在①離心率,②橢圓過點,③面積的最大值為,這三個條件中任選一個,補充在下面(橫線處)問題中,解決下面兩個問題.

設橢圓的左、右焦點分別為,過且斜率為的直線交橢圓于兩點,已知橢圓的短軸長為,________.

1)求橢圓的方程;

2)若線段的中垂線與軸交于點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦點坐標為,,過垂直于長軸的直線交橢圓于、兩點,且.

(Ⅰ)求橢圓的方程;

(Ⅱ)過的直線與橢圓交于不同的兩點,則的內切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中為自然對數(shù)的底數(shù).

(1)若,求的單調區(qū)間;

(2)若,,求證:無零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程的一個根為

1)求復數(shù)的模;

2)若復數(shù)滿足,且為純虛數(shù),求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面內一動點)到點的距離與點軸的距離的差等于1,

1)求動點的軌跡的方程;

2)過點的直線與軌跡相交于不同于坐標原點的兩點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某不透明紙箱中共有4個小球,其中1個白球,3個紅球,它們除顏色外均相同.

(Ⅰ)一次從紙箱中摸出兩個小球,求恰好摸出2個紅球的概率;

(Ⅱ)每次從紙箱中摸出一個小球,記錄顏色后放回紙箱,這樣摸取4次,記得到紅球的次數(shù)為,求的分布列;

(Ⅲ)每次從紙箱中摸出一個小球,記錄顏色后放回紙箱,這樣摸取100次,得到幾次紅球的概率最大?只需寫出結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】梯形中,,矩形所在平面與平面垂直,且.

1)求證:平面平面;

2)若P為線段上一點,且異面直線所成角為45°,求平面與平面所成銳角的余弦值.

查看答案和解析>>

同步練習冊答案