【題目】已知橢圓經(jīng)過(guò)點(diǎn),離心率為.

1)求橢圓的方程;

2)過(guò)點(diǎn)作兩條互相垂直的弦分別與橢圓交于點(diǎn),求點(diǎn)到直線距離的最大值.

【答案】12

【解析】

1)由題意結(jié)合解出后,即可得解;

2)設(shè),,當(dāng)直線的斜率存在時(shí),設(shè)其方程為,代入橢圓方程得,由化簡(jiǎn)可得,進(jìn)而可得直線方程為,由直線過(guò)定點(diǎn)即可得點(diǎn)到直線距離的最大值為;當(dāng)直線斜率不存在時(shí),設(shè)其方程為,求出n后即可得點(diǎn)到直線的距離;即可得解.

1)由題意,得,結(jié)合,得,

所以橢圓的方程為

2)當(dāng)直線的斜率存在時(shí),設(shè)其方程為,

代入橢圓方程,整理得

,

設(shè),,則

因?yàn)?/span>,所以,所以,

,

其中,

代入整理得,即,

當(dāng)時(shí),直線過(guò)點(diǎn),不合題意;

所以,此時(shí)滿足

則直線的方程為,直線過(guò)定點(diǎn)

所以當(dāng)時(shí),

點(diǎn)到直線的最大距離;

當(dāng)直線的斜率不存在時(shí),設(shè)其方程為,由,,

代入可得,

結(jié)合可得(舍去),

當(dāng)時(shí),點(diǎn)到直線的距離為,

綜上,點(diǎn)到直線的最大距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學(xué)習(xí)小組對(duì)成都市一中心路段(限行速度為千米/小時(shí))的擁堵情況進(jìn)行調(diào)查統(tǒng)計(jì),通過(guò)數(shù)據(jù)分析發(fā)現(xiàn):該路段的車流速度(/千米)與車流密度(千米/小時(shí))之間存在如下關(guān)系:如果車流密度不超過(guò)該路段暢通無(wú)阻(車流速度為限行速度);當(dāng)車流密度在時(shí),車流速度是車流密度的一次函數(shù);車流密度一旦達(dá)到該路段交通完全癱瘓(車流速度為零).

1)求關(guān)于的函數(shù)

2)已知車流量(單位時(shí)間內(nèi)通過(guò)的車輛數(shù))等于車流密度與車流速度的乘積,求此路段車流量的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某便利店每天以每件5元的價(jià)格購(gòu)進(jìn)若干鮮奶,然后以每件10元價(jià)格出售,如果當(dāng)天賣不完,剩下的鮮奶作餐廚垃圾處理.便利店記錄了100天這種鮮奶的日需求量(單位:件)如表所示:

日需求量n(件)

140

150

160

170

180

190

200

頻數(shù)

10

20

16

16

15

12

11

100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

1)若便利店一天購(gòu)進(jìn)160件這種鮮奶,X表示當(dāng)天的利潤(rùn)(單位:元),求X的分布列與數(shù)學(xué)期望及方差;

2)若便利店一天購(gòu)進(jìn)160件或170件這種鮮奶,僅從獲得利潤(rùn)大的角度考慮,你認(rèn)為應(yīng)購(gòu)進(jìn)160件還是170件?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是邊長(zhǎng)為1的正方形,垂直于底面,.

1)求證; 

2)求平面與平面所成二面角的大;

3)設(shè)棱的中點(diǎn)為,求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)元;重量超過(guò)的包裹,除收費(fèi)元之外,超過(guò)的部分,每超出(不足,按計(jì)算)需再收元.

該公司將近天,每天攬件數(shù)量統(tǒng)計(jì)如下:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

(1)某人打算將 , 三件禮物隨機(jī)分成兩個(gè)包裹寄出,求該人支付的快遞費(fèi)不超過(guò)元的概率;

(2)該公司從收取的每件快遞的費(fèi)用中抽取元作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的作為其他費(fèi)用.前臺(tái)工作人員每人每天攬件不超過(guò)件,工資元,目前前臺(tái)有工作人員人,那么,公司將前臺(tái)工作人員裁員人對(duì)提高公司利潤(rùn)是否更有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】博覽會(huì)安排了分別標(biāo)有序號(hào)為“1號(hào)”“2號(hào)”“3號(hào)”的三輛車,等可能隨機(jī)順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計(jì)兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號(hào)大于第一輛車的車序號(hào),就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號(hào)”車的概率分別為P1,P2,則( )

A. P1P2 B. P1=P2 C. P1+P2 D. P1<P2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程是(θ為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為:

(1)求曲線C的極坐標(biāo)方程;

(2)設(shè)直線θ=與直線l交于點(diǎn)M,與曲線C交于P,Q兩點(diǎn),已知|OM||OP||OQ)=10,求t的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B是單位圓O上的兩點(diǎn)(O為圓心),∠AOB=120°,點(diǎn)C是線段AB上不與A、B重合的動(dòng)點(diǎn).MN是圓O的一條直徑,則的取值范圍是( )

A. [,0) B. [,0] C. [,1) D. [,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱ABCD—A1B1C1D1中,AB=BD=1,,AA1=BC=2,AD∥BC.

(1)證明:BD⊥平面ABB1A1

(2)比較四棱錐D—ABB1A1與四棱錐D—A1B1C1D1的體積的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案