【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計(jì)算)需再收元.

該公司將近天,每天攬件數(shù)量統(tǒng)計(jì)如下:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

(1)某人打算將, 三件禮物隨機(jī)分成兩個(gè)包裹寄出,求該人支付的快遞費(fèi)不超過元的概率;

(2)該公司從收取的每件快遞的費(fèi)用中抽取元作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的作為其他費(fèi)用.前臺(tái)工作人員每人每天攬件不超過件,工資元,目前前臺(tái)有工作人員人,那么,公司將前臺(tái)工作人員裁員人對(duì)提高公司利潤(rùn)是否更有利?

【答案】(1) ;(2)答案見解析.

【解析】試題分析: 通過列表給出寄出方式,運(yùn)用古典概率即可計(jì)算結(jié)果求出各種情況的頻率,分別求出不裁員和裁員兩種情況的利潤(rùn),比較結(jié)果

解析:(1)由題意,寄出方式有以下三種可能:

情況

第一個(gè)包裹

第二個(gè)包裹

甲支付的總快遞費(fèi)

禮物

重量(

快遞費(fèi)(元)

禮物

重量(

快遞費(fèi)(元)

,

所有種可能中,有種可能快遞費(fèi)未超過元,根據(jù)古典概型概率計(jì)算公式,所求概率為.

(2)將題目中的數(shù)據(jù)轉(zhuǎn)化為頻率,得

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

頻率

若不裁員,則每天可攬件的上限為件,公司每日攬件數(shù)情況如下:

包裹件數(shù)

(近似處理)

實(shí)際攬件數(shù)

頻率

平均攬件數(shù)

故公司平均每日利潤(rùn)為(元);

若裁員人,則每天可攬件的上限為件,公司每日攬件數(shù)情況如下:

包裹件數(shù)

(近似處理)

實(shí)際攬件數(shù)

頻率

平均攬件數(shù)

故公司平均每日利潤(rùn)為(元).

故公司將前臺(tái)工作人員裁員人對(duì)提高公司利潤(rùn)不利.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一舉行了一次數(shù)學(xué)競(jìng)賽,為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為)作為樣本(樣本容量)進(jìn)行統(tǒng)計(jì),按照、、、、的分組作出頻率分布直方圖,已知得分在、的頻數(shù)分別為.

1)求樣本容量和頻率分布直方圖中的、的值;

2)估計(jì)本次競(jìng)賽學(xué)生成績(jī)的眾數(shù)、中位數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系動(dòng)點(diǎn)到定點(diǎn)的距離與它到直線的距離相等.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)設(shè)動(dòng)直線與曲線相切于點(diǎn)與直線相交于點(diǎn)

證明:以為直徑的圓恒過軸上某定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和滿足 .

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列滿足,

(I)求數(shù)列的前項(xiàng)和;

(II)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,且成等比數(shù)列,且.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和;

3)若為數(shù)列的前項(xiàng)和.若對(duì)于任意的,都有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知稱為,的二維平方平均數(shù),稱為,的二維算術(shù)平均數(shù),稱為,的二維幾何平均數(shù),稱為,的二維調(diào)和平均數(shù),其中,均為正數(shù).

(1)試判斷的大小,并證明你的猜想.

(2)令,,試判斷的大小,并證明你的猜想.

(3)令,,,試判斷、、三者之間的大小關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點(diǎn).

(I)證明:CE∥平面PAB;

(II)求直線CE與平面PBC所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M,直線l,下列四個(gè)選項(xiàng),其中正確的是(

A.對(duì)任意實(shí)數(shù)kθ,直線l和圓M有公共點(diǎn)

B.存在實(shí)數(shù)kθ,直線l和圓M相離

C.對(duì)任意實(shí)數(shù)k,必存在實(shí)數(shù)θ,使得直線l與圓M相切

D.對(duì)任意實(shí)數(shù)θ,必存在實(shí)數(shù)k,使得直線l與圓M相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,合肥一中積極開展美麗校園建設(shè),現(xiàn)擬在邊長(zhǎng)為0.6千米的正方形地塊上劃出一片三角形地塊建設(shè)小型生態(tài)園,點(diǎn)分別在邊上.

(1)當(dāng)點(diǎn)分別時(shí)邊中點(diǎn)和靠近的三等分點(diǎn)時(shí),求的余弦值;

(2)實(shí)地勘察后發(fā)現(xiàn),由于地形等原因,的周長(zhǎng)必須為1.2千米,請(qǐng)研究是否為定值,若是,求此定值,若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案