某體育雜志針對2014年巴西世界杯發(fā)起了一項(xiàng)調(diào)查活動,調(diào)查“各球隊(duì)在世界杯的名次與該隊(duì)歷史上的實(shí)力和表現(xiàn)有沒有關(guān)系”,在所有參與調(diào)查的人中,持“有關(guān)系”“無關(guān)系”“不知道”態(tài)度的人數(shù)如表所示:
 有關(guān)系無關(guān)系不知道
40歲以下800450200
40歲以上(含40歲)100150300
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個人,已知從持“有關(guān)系”態(tài)度的人中抽取45人,求n的值,并求從持其他兩種態(tài)度的人中應(yīng)抽取的人數(shù);
(2)在持“不知道”態(tài)度的人中,用分層抽樣的方法抽取5人看成一個總體,從這5人中任選取2人,求至少一人在40歲以下的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,分層抽樣方法
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)由題意求出n=100,由此利用分層抽樣能求出持其他兩種態(tài)度的人中應(yīng)抽取的人數(shù).
(Ⅱ)設(shè)所選取的人中,有m人在40歲以下,由
200
200+300
=
m
5
,解得m=2,由此能求出至少一人在40歲以下的概率.
解答: 解:(Ⅰ)由題意,
800+100
45
=
800+450+200+100+150+300
n
,
解得n=100,…(2分)
從持“無關(guān)系”態(tài)度的人中,應(yīng)抽取
100
2000
×600=30
人,…(3分)
從持“不知道”態(tài)度的人中,應(yīng)抽取
100
2000
×500=25
人.…(4分)
(Ⅱ)設(shè)所選取的人中,有m人在40歲以下,
200
200+300
=
m
5
,解得m=2.…(6分)
就是40歲以下抽取了2人,另一部分抽取了3人,分別記作A1,A2;B1,B2,B3
則從中任取2人的所有基本事件為:
(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),
(A1,A2),(B1,B2),(B1,B3),(B2,B3),共10個…(9分)
其中至少有1人在40歲以下的基本事件為
(A1,B1),(A1,B2),(A1,B2),(A2,B1),
(A2,B2),(A2,B3),(A1,A2)共7個,…(11分)
記事件“選取2人中至少一人在40歲以下”為A,則P(A)=
7
10

所以選取2人中至少一人在40歲以下的概率為
7
10
.…(12分)
點(diǎn)評:本題考查概率的求法,是中檔題,解題時要認(rèn)真審題,注意分層抽樣的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+ax+b(a,b∈R).
(Ⅰ)當(dāng)a=-6時,函數(shù)f(x)定義域和值域都是[1,
b
2
],求b的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,1)上與x軸有兩個不同的交點(diǎn),求b(1+a+b)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程x2+x+a=0的一個根大于1,另一根小于1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直角梯形ABCD中,AB∥CD,AB=
1
2
CD,AB⊥BC,平面ABCD⊥平面BCE,△BCE為等邊三角形,M,F(xiàn)分別是BE,BC的中點(diǎn),DN=
1
4
DC.
(1)證明:EF⊥AD;
(2)證明:MN∥平面ADE;
(3)若AB=1,BC=2,求幾何體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+ax-lnx(a∈R).
(I)當(dāng)a=3時,求函數(shù)f(x)在[
1
2
,2]上的最大值和最小值;
(Ⅱ)函數(shù)f(x)既有極大值又有極小值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若y=|x-3|+|x+a|的最小值是5,求a.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊烽懗鑸电仚婵°倗濮寸换姗€鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾诲┑鐘叉搐缁狀垶鏌ㄩ悤鍌涘