已知tanθ=-
1
3
,求
7sinθ-3cosθ
4sinθ+5cosθ
的值.
考點:三角函數(shù)的化簡求值
專題:三角函數(shù)的求值
分析:要求的式子分子分母同除以cosθ,由同角三角函數(shù)的基本關(guān)系可化為tanθ的式子,代值化簡可得.
解答: 解:∵tanθ=-
1
3
,
7sinθ-3cosθ
4sinθ+5cosθ
=
7tanθ-3
4tanθ+5

=
7(-
1
3
)-3
4(-
1
3
)+5
=-
28
11
點評:本題考查三角函數(shù)的化簡,弦化切是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

正四面體ABCD棱長為a,求正四面體的各個面中心為頂點的多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某體育雜志針對2014年巴西世界杯發(fā)起了一項調(diào)查活動,調(diào)查“各球隊在世界杯的名次與該隊歷史上的實力和表現(xiàn)有沒有關(guān)系”,在所有參與調(diào)查的人中,持“有關(guān)系”“無關(guān)系”“不知道”態(tài)度的人數(shù)如表所示:
 有關(guān)系無關(guān)系不知道
40歲以下800450200
40歲以上(含40歲)100150300
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個人,已知從持“有關(guān)系”態(tài)度的人中抽取45人,求n的值,并求從持其他兩種態(tài)度的人中應(yīng)抽取的人數(shù);
(2)在持“不知道”態(tài)度的人中,用分層抽樣的方法抽取5人看成一個總體,從這5人中任選取2人,求至少一人在40歲以下的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

球面上的3個點,其中任意兩點的球面距離都等于大圓周長的
1
6
,經(jīng)過這3個點的小圓的周長為4π,求這個球的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)p,q是實數(shù),證明:方程x2+p|x|=qx-1有4個實根的充要條件是p+|q|+2<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)y=f(x)是偶函數(shù),且x≥0時,f(x)=2(x-1)
(Ⅰ)當x<0時,求f(x)解析式;
(Ⅱ)當x∈[-1,m](m>-1)時,求f(x)取值的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有900名學生參加“環(huán)保知識競賽”,為考察競賽成績情況,從中抽取部分學生的成績(得分均整數(shù),滿分為100分)進行統(tǒng)計,請你根據(jù)尚未完成并有局部污損的頻率分面表和頻率分布直方圖(如圖)解釋下列問題.
(1)填滿頻率分布表;
(2)補全頻率分布直方圖;
(3)若成績在75.5-85.5的學生可以獲得二等獎,求獲得二等獎的學生人數(shù).
分組頻數(shù)頻率
50.5--60.540.08
60.5--70.50.16
70.5--80.510
80.5--90.5160.32
90.5-100.5
合計50

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:|1-
2
|-2sin45°+(π-3.14)0+2-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
ex-1
ex+1
的值域是
 

查看答案和解析>>

同步練習冊答案