【題目】已知A、B、C是單位圓上三個(gè)互不相同的點(diǎn).若 ,則 的最小值是( )
A.0
B.-
C.-
D.-
【答案】C
【解析】解:由題意可得,點(diǎn)A在BC的垂直平分線上,不妨設(shè)單位圓
的圓心為O(0,0),
點(diǎn)A(0,1),點(diǎn)B(x1 , y1),則點(diǎn)C(﹣x1 , y1),
﹣1≤y1<1.
∴ =(x1 , y1﹣1), =(﹣x1 , y1﹣1), + =1.
∴ =﹣ + ﹣2y1+1=﹣(1﹣ )+ ﹣2y1+1
=2 ﹣2y1 ,
∴當(dāng)y1= 時(shí), 取得最小值為﹣ ,
故選:C.
由題意可得,點(diǎn)A在BC的垂直平分線上,不妨設(shè)單位圓的圓心為O(0,0),點(diǎn)A(0,1),點(diǎn)B(x1 , y1),則點(diǎn)C(﹣x1 , y1), + =1,且﹣1≤y1<1.根據(jù) =2 ﹣2y1 , 再利用二次函數(shù)的性質(zhì)求得它的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點(diǎn).
(1)求證:PA∥平面EDB;
(2)求銳二面角C﹣PB﹣D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,滿(mǎn)足“對(duì)任意的x1,x2∈(0,+∞),使得<0”成立的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), .
(1)當(dāng)時(shí), 在上恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若函數(shù)在上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】綠色出行越來(lái)越受到社會(huì)的關(guān)注,越來(lái)越多的消費(fèi)者對(duì)新能源汽車(chē)感興趣但是消費(fèi)者比較關(guān)心的問(wèn)題是汽車(chē)的續(xù)駛里程某研究小組從汽車(chē)市場(chǎng)上隨機(jī)抽取20輛純電動(dòng)汽車(chē)調(diào)查其續(xù)駛里程單次充電后能行駛的最大里程,被調(diào)查汽車(chē)的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計(jì)結(jié)果分成5組: ,繪制成如圖所示的頻率分布直方圖.
求直方圖中m的值;
求本次調(diào)查中續(xù)駛里程在的車(chē)輛數(shù);
若從續(xù)駛里程在的車(chē)輛中隨機(jī)抽取2輛車(chē),求其中恰有一輛車(chē)?yán)m(xù)駛里程在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 與 的圖像上存在關(guān)于軸對(duì)稱(chēng)的點(diǎn),則的取值范圍是________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分分)已知圓有以下性質(zhì):
①過(guò)圓上一點(diǎn)的圓的切線方程是.
②若為圓外一點(diǎn),過(guò)作圓的兩條切線,切點(diǎn)分別為,則直線的方程為.
③若不在坐標(biāo)軸上的點(diǎn)為圓外一點(diǎn),過(guò)作圓的兩條切線,切點(diǎn)分別為,則垂直,即,且平分線段.
(1)類(lèi)比上述有關(guān)結(jié)論,猜想過(guò)橢圓上一點(diǎn)的切線方程(不要求證明);
(2)過(guò)橢圓外一點(diǎn)作兩直線,與橢圓相切于兩點(diǎn),求過(guò)兩點(diǎn)的直線方程;
(3)若過(guò)橢圓外一點(diǎn)(不在坐標(biāo)軸上)作兩直線,與橢圓相切于兩點(diǎn),求證:為定值,且平分線段.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線過(guò)點(diǎn).
① 求實(shí)數(shù)的值;
② 設(shè)函數(shù),當(dāng)時(shí),試比較與的大;
(2)若函數(shù)有兩個(gè)極值點(diǎn),(),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心在軸上,點(diǎn)是圓的上任一點(diǎn),且當(dāng)點(diǎn)的坐標(biāo)為時(shí),到直線距離最大.
(1)求直線被圓截得的弦長(zhǎng);
(2)已知,經(jīng)過(guò)原點(diǎn),且斜率為的直線與圓交于,兩點(diǎn).
(Ⅰ)求證:為定值;
(Ⅱ)若,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com