某家電產(chǎn)品受在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每件的利潤與該產(chǎn)品首次出現(xiàn)故障的時間有關(guān).某廠家生產(chǎn)甲、乙兩種品牌,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌家電中各隨機(jī)抽取50件,統(tǒng)計數(shù)據(jù)如下:
品牌 | 甲 | 乙 | |||
首次出現(xiàn)故障時間x(年) | 0<x≤1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
數(shù)量(件) | 2 | 3 | 45 | 5 | 45 |
每件利潤(百元) | 1 | 2 | 3 | 1.8 | 2.9 |
將頻率視為概率,解答下列問題:
(I)從該廠生產(chǎn)的甲、乙品牌產(chǎn)品中隨機(jī)各抽取一件,求其至少有一件首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(II)若該廠生產(chǎn)的家電均能售出,記生產(chǎn)一件甲品牌的利潤為X1,生產(chǎn)一件乙品牌家電的利潤為X2,分別求X1,X2的分布列;
(III)該廠預(yù)計今后這兩種品牌家電銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的家電.若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的家電?說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
由三角形的性質(zhì)通過類比推理,得到四面體的如下性質(zhì):四面體的六個二面角的平分面交于一點(diǎn),且這個點(diǎn)是四面體內(nèi)切球的球心,那么原來三角形的性質(zhì)為 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知為正項等比數(shù)列,Sn是它的前n項和.若 ,且
a4與a7的等差中項為,則 的值 ( )
A.29 B.31 C.33 D.35
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)不等式組 表示的平面區(qū)域為D,若指數(shù)函數(shù)y=的圖像上存在區(qū)域D上的點(diǎn),則a 的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.
已知曲線C: (t為參數(shù)), C:(為參數(shù))。
(I)化C,C的方程為普通方程,并說明它們分別表示什么曲線;
(II)若C上的點(diǎn)P對應(yīng)的參數(shù)為,Q為C上的動點(diǎn),求中點(diǎn)到直線 距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若復(fù)數(shù),則在復(fù)平面上對應(yīng)的點(diǎn)在
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)在處取得極值。
(1)求實數(shù)的值;
(2)若關(guān)于的方程在區(qū)間上恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍。
(3)證明:對任意的正整數(shù),不等式都成立。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com