函數(shù)y=log2(x-1)所過定點(diǎn)是
 
考點(diǎn):對數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令對數(shù)的真數(shù)等于零,求得x、y的值,可得函數(shù)y=log2(x-1)所過定點(diǎn)的坐標(biāo).
解答: 解:令x-1=1,求得x=2,y=0,故函數(shù)y=log2(x-1)所過定點(diǎn)是(2,0),
故答案為:(2,0).
點(diǎn)評:本題主要考查對數(shù)函數(shù)的單調(diào)性和特殊點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若3a+3b<6,則點(diǎn)(a,b)必在( 。
A、直線x+y-2=0的左下方
B、直線x+y-2=0的右上方
C、直線x+2y-2=0的右上方
D、直線x+2y-2=0的左下方

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos(x-
π
3
)+2sin(
2
-x).
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)減區(qū)間;
(3)求函數(shù)f(x)的最大值并求f(x)取得最大值時的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A中含有三個元素3,x,x2-2x.
(1)求實(shí)數(shù)x應(yīng)滿足的條件;
(2)若-2∈A,求實(shí)數(shù)x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log
1
2
(x2-ax-a)
的值域?yàn)镽,且在(-∞,1-
3
)上是增函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=sinα+cosα,b=sinβ+cosβ,且0<α<β<
π
4
,則( 。
A、a<
a2+b2
2
<b<
a2+b2
2
B、a<b<
a2+b2
2
a2+b2
2
C、a<
a2+b2
2
a2+b2
2
<b
D、
a2+b2
2
<a<b<
a2+b2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中an=21-3n,求當(dāng)n為多少時,Sn有最大值且求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
2
sin(
x
2
-
π
4
),
3
cos
x
2
),向量
b
=(
2
sin(
x
2
+
π
4
),2sin
x
2
),函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的對稱軸方程及單調(diào)遞增區(qū)間;
(2)在銳角△ABC中,若f(A)=
2
3
,求cosA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=3”是“直線ax+2y+2a=0和直線3x+(a-1)y-a+7=0平行”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、即不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案