【題目】在平面直角坐標系xOy中,動點E到定點和定直線的距離相等.
(1)求動點E的軌跡C的方程;
(2)設動直線與曲線C有唯一的公共點P,與直線相交于點Q,若,求證:點M的軌跡恒過定點.
【答案】(1);(2)見解析.
【解析】
(1)設出動點E的坐標為(x,y),然后直接利用拋物線的定義求得拋物線方程;
(2)聯(lián)立直線方程和拋物線方程,化為關于y的一元二次方程后由判別式等于0得到k與b的關系,求出Q的坐標,求出切點坐標,再設出M的坐標,然后由證得答案.
(1)解:由拋物線定義可知,動點E的軌跡是以(1,0)為焦點,以x=﹣1為準線的拋物線,其方程為:y2=4x;
(2)證明:由,消去x得:ky2﹣4y+4b=0.
由題意可知,直線l與拋物線相切,
∴△=16﹣16kb=0,即b.
∴直線l的方程為y=kx.
令x=﹣1,得y=﹣k,
∴Q(﹣1,﹣k),
設切點坐標P(x0,y0),則,
解得:P(,),
設M(m,0),
則(m,)(m+1,k)=(m)(m+1)
mm22=(m﹣1)(m﹣2).
當m=1時,.
故點M的軌跡恒過定點(1,0).
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,和均是等腰直角三角形,,,、分別為、的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),如果存在給定的實數(shù)對,使得恒成立,則稱為“函數(shù)”;
(1)判斷函數(shù),是否是“函數(shù)”;
(2)若是一個“函數(shù)”,求出所有滿足條件的有序實數(shù)對;
(3)若定義域為的函數(shù)是“函數(shù)”,且存在滿足條件的有序實數(shù)對和,當時,的值域為,求當時的值域;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知是圓的直徑,,在圓上且分別在的兩側,其中,.現(xiàn)將其沿折起使得二面角為直二面角,則下列說法不正確的是( )
A.,,,在同一個球面上
B.當時,三棱錐的體積為
C.與是異面直線且不垂直
D.存在一個位置,使得平面平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,我國工業(yè)經(jīng)濟發(fā)展迅速,工業(yè)增加值連年攀升,某研究機構統(tǒng)計了近十年(從2008年到2017年)的工業(yè)增加值(萬億元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工業(yè)增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依據(jù)表格數(shù)據(jù),得到下面的散點圖及一些統(tǒng)計量的值.
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
(1)根據(jù)散點圖和表中數(shù)據(jù),此研究機構對工業(yè)增加值(萬億元)與年份序號的回歸方程類型進行了擬合實驗,研究人員甲采用函數(shù),其擬合指數(shù);研究人員乙采用函數(shù),其擬合指數(shù);研究人員丙采用線性函數(shù),請計算其擬合指數(shù),并用數(shù)據(jù)說明哪位研究人員的函數(shù)類型擬合效果最好.(注:相關系數(shù)與擬合指數(shù)滿足關系).
(2)根據(jù)(1)的判斷結果及統(tǒng)計值,建立關于的回歸方程(系數(shù)精確到0.01);
(3)預測到哪一年的工業(yè)增加值能突破30萬億元大關.
附:樣本 的相關系數(shù),
,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位共有老年人120人,中年人360人,青年人n人,為調查身體健康狀況,需要從中抽取一個容量為m的樣本,用分層抽樣的方法進行抽樣調查,樣本中的中年人為6人,則n和m的值不可以是下列四個選項中的哪組( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在貫徹中共中央、國務院關于精準扶貧政策的過程中,某單位在某市定點幫扶某村戶貧困戶.為了做到精準幫扶,工作組對這戶村民的年收入情況、危舊房情況、患病情況等進行調查,并把調查結果轉化為各戶的貧困指標.將指標按照,,,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認定該戶為“絕對貧困戶”,否則認定該戶為“相對貧困戶”;當時,認定該戶為“亟待幫住戶”.工作組又對這戶家庭的受教育水平進行評測,家庭受教育水平記為“良好”與“不好”兩種.
(1)完成下面的列聯(lián)表,并判斷是否有的把握認為絕對貧困戶數(shù)與受教育水平不好有關:
受教育水平良好 | 受教育水平不好 | 總計 | |
絕對貧困戶 | |||
相對貧困戶 | |||
總計 |
(2)上級部門為了調查這個村的特困戶分布情況,在貧困指標處于的貧困戶中,隨機選取兩戶,用表示所選兩戶中“亟待幫助戶”的戶數(shù),求的分布列和數(shù)學期望.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,等腰梯形中,,,,為中點,以為折痕把折起,使點到達點的位置(平面).
(Ⅰ)證明:;
(Ⅱ)若直線與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com