已知函數(shù)f(x)是定義在[-3,3]上的奇函數(shù),且當(dāng)x∈[0,3]時(shí),f(x)=x|x-2|

⑴在平面直角坐標(biāo)系中,畫出函數(shù)f(x)的圖象
⑵根據(jù)圖象,寫出f(x)的單調(diào)增區(qū)間,同時(shí)寫出函數(shù)的值域.

(1)圖見試題解析;(2)單調(diào)增區(qū)間為,;值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f5/3/dusrr2.png" style="vertical-align:middle;" />.

解析試題分析:要作出函數(shù)的圖象,必須把函數(shù)解析式化解,即去掉絕對(duì)值符號(hào),化為一般的分段函數(shù),時(shí),對(duì)于,可以根據(jù)奇函數(shù)的定義,求出的解析式,然后作出函數(shù)的圖象,也可先作出時(shí)圖象,然后根據(jù)奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱這個(gè)性質(zhì),得出時(shí)的圖象.
試題解析:(1)圖象如下圖,

(2)單調(diào)增區(qū)間為,;值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f5/3/dusrr2.png" style="vertical-align:middle;" />.
考點(diǎn):1、函數(shù)的圖象;2、單調(diào)區(qū)間.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)對(duì)任意,都有,當(dāng)時(shí), 
(1)求證:是奇函數(shù);
(2)試問:在時(shí) ,是否有最大值?如果有,求出最大值,如果沒有,說明理由.
(3)解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a4/3/ifvxo2.png" style="vertical-align:middle;" />,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),函數(shù)恒有意義,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),且
(1)求的值,并確定函數(shù)的定義域;
(2)用定義研究函數(shù)范圍內(nèi)的單調(diào)性;
(3)當(dāng)時(shí),求出函數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)定義在上的奇函數(shù)
(1).求值;(4分)
(2).若上單調(diào)遞增,且,求實(shí)數(shù)的取值范圍.(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)).
(1)討論的奇偶性;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間;
(3)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是定義在上的奇函數(shù),且上是減函數(shù),解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)對(duì)于任意實(shí)數(shù),恒成立,求的最大值;
(2)若方程有且僅有一個(gè)實(shí)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)設(shè),,證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);
(2) 設(shè),若對(duì)任意,有,求的取值范圍;
(3)在(1)的條件下,設(shè)內(nèi)的零點(diǎn),判斷數(shù)列的增減性.

查看答案和解析>>

同步練習(xí)冊(cè)答案