已知函數(shù)
(1)若函數(shù)的值域為,求實數(shù)的取值范圍;
(2)當(dāng)時,函數(shù)恒有意義,求實數(shù)的取值范圍.

(1);(2).

解析試題分析:(1)對數(shù)函數(shù)的值域為,意味著真數(shù)可以取遍一切正實數(shù),故內(nèi)層二次函數(shù)應(yīng)與軸有交點,即,解得的范圍;
(2)函數(shù)恒有意義,即真數(shù)大于零恒成立,利用參變分離法解決此恒成立問題即可得的取值范圍
試題解析:(1)令,由題設(shè)知需取遍內(nèi)任意值,
所以解得 
的取值范圍為.
(2)對一切恒成立且
對一切恒成立
,當(dāng)時,取得最小值為
得:
又因為:
所以:的取值范圍為.
考點:對數(shù)函數(shù)的圖像和性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在區(qū)間上是增函數(shù).
(1)求實數(shù)的值組成的集合
(2)設(shè)關(guān)于的方程的兩個非零實根為、.試問:是否存在實數(shù),使得不等式對任意 恒成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

上最大值是5,最小值是2,若,在上是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的最小值為,且關(guān)于的一元二次不等式的解集為。
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)其中,求函數(shù)時的最大值;
(Ⅲ)若為實數(shù)),對任意,總存在使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知函數(shù).
(l)求的單調(diào)區(qū)間和極值;
(2)若對任意恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若,判斷函數(shù)上的單調(diào)性并用定義證明;
(2)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)是定義在[-3,3]上的奇函數(shù),且當(dāng)x∈[0,3]時,f(x)=x|x-2|

⑴在平面直角坐標(biāo)系中,畫出函數(shù)f(x)的圖象
⑵根據(jù)圖象,寫出f(x)的單調(diào)增區(qū)間,同時寫出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù))滿足①;②
(1)求的解析式;
(2)若對任意實數(shù),都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案