曲線y=x3-x+1在x=1處的切線方程是( 。
A、y=1B、y=x
C、y=2x-1D、y=x+1
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:先求出函數(shù)y=x3-x+1的導(dǎo)函數(shù),然后求出在x=1處的導(dǎo)數(shù),從而求出切線的斜率,利用點(diǎn)斜式方程求出切線方程即可.
解答: 解:y'=3x2-1,
y'|x=1=2,切點(diǎn)為(1,1)
∴曲線y=x3-x+1在點(diǎn)(1,1)切線方程為y-1=2(x-1),
即y=2x-1.
故選C.
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,考查運(yùn)算求解能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列運(yùn)算中不正確的是( 。
A、e2x=(ex2
B、
a
b
=
ab
C、
3(a-b)3
=a-b
D、
4(3-π)4
=3-π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷錯誤的是( 。
A、“am2<bm2”是“a<b”的充分不必要條件
B、若p,q均為假命題,則p且q為假命題
C、命題“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1>0”
D、若ξ~B(4,0.25),則Dξ=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x為實(shí)數(shù),條件p:x2<x,條件q:
1
x
>2,則p是q的( 。
A、充要條件
B、必要不充分條件
C、充分不必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
(1+i)2
1-i
的虛部為( 。
A、-iB、iC、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用秦九韶算法求多項(xiàng)式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4的值時,若v0=3,v1=-7,則v4的值為( 。
A、-57B、124
C、-845D、220

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)M>0,使|f(x)|≤M|x|對一切實(shí)數(shù)x均成立,則稱f(x)為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù):①f(x)=2x;②f(x)=x2+1;③f(x)=cosx;④f(x)=
x
x2-x+3
.其中是“倍約束函數(shù)”的有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>0,若
3
是3a與3b的等比中項(xiàng),則
1
a
+
1
b
的最小值(  )
A、2
B、
1
4
C、4
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差不為0的等差數(shù)列,滿足S3=9,且a1,a2,a5成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)b1=a1,bn+1-bn=2 an(n∈N*),求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊答案