一個三角形三內角既成等差數(shù)列,又成等比數(shù)列,則三內角的公差為(  )
A、0°B、15°
C、30°D、60°
考點:等差數(shù)列的性質,等比數(shù)列的性質
專題:計算題,等差數(shù)列與等比數(shù)列
分析:根據(jù)等差數(shù)列和等比數(shù)列的性質可求出三角形的三個角,從而可判定三內角的公差.
解答: 解:一個三角形的三內角的度數(shù)成等差數(shù)列
設△ABC的三內角A、B、C成等差數(shù)列,
∴∠B=60°,∠A+∠C=120°
而A、B、C成等比數(shù)列則A=B=C=60°
故三內角的公差為0°.
故選:A.
點評:本題主要考查了等差數(shù)列和等比數(shù)列的概念,同時考查了分析問題的能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若不等式x2-kx+k-1>0對x∈(1,2)恒成立,則實數(shù)k的取值范圍是( 。
A、(-∞,2)
B、(-∞,2]
C、(2,+∞)
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=-x2+2x的單調遞減區(qū)間為( 。
A、(-1,2)
B、(1,2)
C、(-∞,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下三個命題:
①已知P(m,4)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的一點,F(xiàn)1、F2是左、右兩個焦點,若△PF1F2的內切圓的半徑為
3
2
,則此橢圓的離心率e=
4
5

②過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點F作斜率為
3
的直線交C于A,B兩點,若
AF
=4
FB
,則該雙曲線的離心率e=
6
5
;
③已知F1(-2,0)、F2(2,0),P是直線x=-1上一動點,若以F1、F2為焦點且過點P的雙曲線的離心率為e,則e的取值范圍是[2,+∞).
其中真命題的個數(shù)為( 。
A、3個B、2個C、1個D、0個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2分別為雙曲線
x2
a2
-
y2
b2
=1(a,b>0)的左、右焦點,動點P滿足
PF1
PF2
=0,若直線l:3x-4y-10=0與點P的軌跡有且只有一個公共點,則下列結論正確的是(  )
A、a2+b2=2
B、a2-b2=2
C、a2+b2=4
D、a2-b2=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果平面外一條直線上有兩點到這個平面的距離相等,則這條直線和這個平面的位置關系是( 。
A、平行B、相交
C、平行或相交D、不可能垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn且滿足S24>0,S25<0,記bn=|an|,則bn最小時,n的值為(  )
A、11B、12C、13D、14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={1,2,3,m},B={4,6,7,n4,3n+n2},其中m,n∈N,映射f:A→B滿足f:x→3x+1,則m,n的值分別為( 。
A、m=2,n=5
B、m=5,n=2
C、m=1,n=3
D、m=3,n=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)的二次項系數(shù)為a,拋物線的頂點是(1,2).若方程f(x)+2x=0有兩個相等的實根,
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x)≤
9
4

查看答案和解析>>

同步練習冊答案