【題目】如圖,在長方體中,,,點,,分別是線段,,的中點.
(1)求證:平面;
(2)在線段上有一點,若二面角的余弦值為,求點到平面的距離.
【答案】(1)證明見解析;(2)
【解析】
(1)以長方體的頂點D為原點,建立空間直角坐標(biāo)系,利用平面的法向量和垂直可證得結(jié)果;
(2)求出平面的法向量,平面的法向量,由二面角的余弦值為,求出,,利用向量法能求出點到平面的距離.
解:(1)證明:如圖,以長方體的頂點為原點,建立空間直角坐標(biāo)系,
則,,,,
,,分別是,,的中點,
則,,,
平面的一個法向量,
,0,,,
平面,平面.
(2)解:設(shè)點,其中,,
則,,
設(shè)平面的法向量,,,
則,取,得,1,,
平面的一個法向量為,
由二面角的余弦值為,可得,
,化簡得,
解得或,
,,,,,,
點到平面的距離.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某省各景點在大眾中的熟知度,隨機(jī)對15~65歲的人群抽樣了人,回答問題“某省有哪幾個著名的旅游景點?”統(tǒng)計結(jié)果如下圖表
組號 | 分組 | 回答正確 的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第1組 | [15,25) | 0.5 | |
第2組 | [25,35) | 18 | |
第3組 | [35,45) | 0.9 | |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 |
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)在(2)抽取的6人中隨機(jī)抽取2人,求所抽取的人中恰好沒有第3組人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點處的切線方程為.
(1)求的解析式;
(2)判斷方程在內(nèi)的解的個數(shù),并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校共有教職工900人,分成三個批次進(jìn)行繼續(xù)教育培訓(xùn),在三個批次中男、女教職工人數(shù)如下表所示. 已知在全體教職工中隨機(jī)抽取1名,抽到第二批次中女教職工的概率是0.16 .
(1)求的值;
(2)現(xiàn)用分層抽樣的方法在全體教職工中抽取54名做培訓(xùn)效果的調(diào)查, 問應(yīng)在第三批次中抽取教職工多少名?
(3)已知,求第三批次中女教職工比男教職工多的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,四邊形是菱形,四邊形是正方形,,,,點為的中點.
(1)求證:平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】法國有個名人叫做布萊爾·帕斯卡,他認(rèn)識兩個賭徒,這兩個賭徒向他提出一個問題,他們說,他們下賭金之后,約定誰先贏滿5局,誰就獲得全部賭金700法郎,賭了半天,甲贏了4局,乙贏了3局,時間很晚了,他們都不想再賭下去了.假設(shè)每局兩賭徒輸贏的概率各占,每局輸贏相互獨(dú)立,那么這700法郎如何分配比較合理( )
A.甲400法郎,乙300法郎B.甲500法郎,乙200法郎
C.甲525法郎,乙175法郎D.甲350法郎,乙350法郎
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知橢圓:的左、右頂點分別為A,B,其離心率,點為橢圓上的一個動點,面積的最大值是.
(1)求橢圓的方程;
(2)若過橢圓右頂點的直線與橢圓的另一個交點為,線段的垂直平分線與軸交于點,當(dāng)時,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】類比平面幾何中的定理:△ABC中,若DE是△ABC的中位線,則有S△ADE∶S△ABC=1∶4;若三棱錐A-BCD有中截面EFG∥平面BCD,則截得三棱錐的體積與原三棱錐體積之間的關(guān)系式為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()和圓:,分別是橢圓的左、右兩焦點,過且傾斜角為()的動直線交橢圓于兩點,交圓于兩點(如圖所示,點在軸上方).當(dāng)時,弦的長為.
(1)求圓與橢圓的方程;
(2)若依次成等差數(shù)列,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com