方程(2x+3y-1)( -1)=0表示的曲線是( )
A.兩條直線 B.兩條射線
C.兩條線段 D.一條直線和一條射線
科目:高中數(shù)學(xué) 來源: 題型:
過拋物線C:x2=2py(p>0)的焦點F作直線l與拋物線C交于A、B兩點,當(dāng)點A的縱坐標為1時,|AF|=2.
(1)求拋物線C的方程;
(2)若直線l的斜率為2,問拋物線C上是否存在一點M,使得MA⊥MB,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點N(1,2),過點N的直線交雙曲線x2-=1于A,B兩點,且
(1)求直線AB的方程;
(2)若過N的另一條直線交雙曲線于C,D兩點,且=0,那么A,B,C,D四點是否共圓?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
將兩個頂點在拋物線y2=2px(p>0)上,另一個頂點是此拋物線焦點的正三角形個數(shù)記為n,則( )
A.n=0 B.n=1
C.n=2 D.n≥3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點C(1,0),點A、B是⊙O:x2+y2=9上任意兩個不同的點,且滿足=0,設(shè)P為弦AB的中點.
(1)求點P的軌跡T的方程;
(2)試探究在軌跡T上是否存在這樣的點:它到直線x=-1的距離恰好等于到點C的距離?若存在,求出這樣的點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2014·鶴壁淇縣檢測)如圖所示,已知C為圓(x+)2+y2=4的圓心,點A(,0),P是圓上的動點,點Q在圓的半徑CP所在直線上,且當(dāng)點P在圓上運動時,求點Q的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(1)證明:AB⊥A1C;
(2)若平面ABC⊥平面AA1B1B,AB=CB=2,求直線A1C 與平面BB1C1C所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com