(理數(shù))(14分) 已知函數(shù),.
(Ⅰ)設(shè)函數(shù)F(x)=18f(x)- [h(x)],求F(x)的單調(diào)區(qū)間與極值;
(Ⅱ)設(shè),解關(guān)于x的方程;
(Ⅲ)設(shè),證明:.
(理數(shù)) 解:(Ⅰ),
.
令,得(舍去).
當(dāng)時(shí).;當(dāng)時(shí),,
故當(dāng)時(shí),為增函數(shù);當(dāng)時(shí),為減函數(shù).
為的極大值點(diǎn),且.………………………………4分
(Ⅱ)原方程可化為,即
……………6分
①當(dāng)時(shí),原方程有一解;
②當(dāng)時(shí),原方程有二解;…………8分
③當(dāng)時(shí),原方程有一解;
④當(dāng)或時(shí),原方程無解.……………………10分
(Ⅲ)由已知得,
.
設(shè)數(shù)列的前n項(xiàng)和為,且()
從而有,當(dāng)時(shí),.
又
.
即對(duì)任意時(shí),有,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/85/d/ks6b92.gif" style="vertical-align:middle;" />,所以………14分.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若的兩個(gè)極值點(diǎn)為,且,求實(shí)數(shù)的值;
(2)是否存在實(shí)數(shù),使得是上的單調(diào)函數(shù)?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知函數(shù),,
(Ⅰ)當(dāng)時(shí),若在上單調(diào)遞增,求的取值范圍;
(Ⅱ)求滿足下列條件的所有實(shí)數(shù)對(duì):當(dāng)是整數(shù)時(shí),存在,使得是的最大值,是的最小值;
(Ⅲ)對(duì)滿足(Ⅱ)的條件的一個(gè)實(shí)數(shù)對(duì),試構(gòu)造一個(gè)定義在,且上的函數(shù),使當(dāng)時(shí),,當(dāng)時(shí),取得最大值的自變量的值構(gòu)成以為首項(xiàng)的等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)f(x)=,其中a , b , c是以d為公差的等差數(shù)列,且a>0,d>0.設(shè)[1-]上,,在,將點(diǎn)A, B, C,
(Ⅰ)求
(II)若⊿ABC有一邊平行于x軸,且面積為,求a ,d的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax+blnx在x=1處有極值.
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) (1)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍; (2)若是的極值點(diǎn),求在上的最大值;(3)在(2)的條件下,是否存在實(shí)數(shù),使得函數(shù)的圖像與函數(shù)的圖象恰有3個(gè)交點(diǎn)?若存在,請求出實(shí)數(shù)的取值范圍;若不存在,試說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
(I)求的單調(diào)區(qū)間;
(II)若對(duì)于任意的,都有求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知函數(shù)(常數(shù).
(Ⅰ) 當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)(為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com