已知函數(shù)f(x)=ax+blnx在x=1處有極值.
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.

(1)a= b=-1    (2)增區(qū)間(1,+),減區(qū)間(0,1)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù),已知是奇函數(shù)。
(Ⅰ)求b,c的值;
(Ⅱ)求g(x)的單調(diào)區(qū)間與極值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖像在點(diǎn)處的切線的傾斜角為,問:在什么范圍取值時,函數(shù)在區(qū)間上總存在極值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知函數(shù),在點(diǎn)處的切線方程是(e為自然對數(shù)的底)。
(1)求實(shí)數(shù)的值及的解析式;
(2)若是正數(shù),設(shè),求的最小值;
(3)若關(guān)x的不等式對一切恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(理數(shù))(14分) 已知函數(shù),
(Ⅰ)設(shè)函數(shù)F(x)=18f(x)- [h(x)],求F(x)的單調(diào)區(qū)間與極值;
(Ⅱ)設(shè),解關(guān)于x的方程;
(Ⅲ)設(shè),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)在點(diǎn)處的切線方程為
(I)求的表達(dá)式;
(Ⅱ)滿足恒成立,則稱的一個“上界函數(shù)”,如果函數(shù)R)的一個“上界函數(shù)”,求t的取值范圍;
(Ⅲ)當(dāng)時,討論在區(qū)間(0,2)上極值點(diǎn)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品的月生產(chǎn)量(噸)與每噸產(chǎn)品的價(jià)格p(元/噸)之間的關(guān)系式為:p=24200-0.2x2,且生產(chǎn)x噸的成本為(元).問該廠每月生產(chǎn)多少噸產(chǎn)品才能使利潤達(dá)到最大?最大利潤是多少?(注:利潤=收入─成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


(本小題滿分14分)
已知函數(shù)在(0,1)內(nèi)是增函數(shù).
  (1)求實(shí)數(shù)的取值范圍;
  (2)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.(本小題滿分12分)
已知以函數(shù)f(x)=mx3-x的圖象上一點(diǎn)N(1,n)為切點(diǎn)的切線傾斜角為.
(1)求m、n的值;
(2)是否存在最小的正整數(shù)k,使得不等式f(x)≤k-1995,對于x∈[-1,3]恒成立?若存在,求出最小的正整數(shù)k,否則請說明理由.

查看答案和解析>>

同步練習(xí)冊答案