函數(shù)f(x)=
(x+2)(x+a)
x
是奇函數(shù),則a=
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)f(x)=
(x+2)(x+a)
x
是奇函數(shù),可得f(-x)=-f(x),據(jù)此列出等式,求出a的值即可.
解答: 解:根據(jù)函數(shù)f(x)=
(x+2)(x+a)
x
是奇函數(shù),
可得f(-x)=-f(x),
所以
(-x+2)(-x+a)
-x
=-
(x+2)(x+a)
x
,
整理,可得(x-2)(x-a)=(x+2)(x+a),
即x2-(a+2)x+2a=x2+(a+2)x+2a,
所以a+2=0,
解得a=-2.
故答案為:-2.
點評:本題主要考查了函數(shù)的奇偶性質(zhì)的運用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

O為坐標(biāo)原點,平面內(nèi)的向量
OA
=(1,7),
OB
=(5,1),
OM
=(6,3),點P(x,y)是線段OM上的一個動點.
(1)求x-2y的值;
(2)求
PA
PB
的取值范圍;
(3)當(dāng)
PA
PB
取最小值時,求∠APB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某車間有50名工人,要完成150件產(chǎn)品的生產(chǎn)任務(wù),每件產(chǎn)品由3個A型零件和1個B型零件配套組成,每個工人每小時能加工5個A型零件或者3個B型零件,現(xiàn)在把這些工人分成兩組同時工作(分組后人數(shù)不再進(jìn)行調(diào)整),每組加工同一種型號的零件.設(shè)加工A型零件的工人數(shù)為x名(x∈N*).
(1)設(shè)完成A、B型零件加工所需的時間分別為f(x)、g(x)小時,寫出f(x)與g(x)的解析式;
(2)當(dāng)x取何值時,完成全部生產(chǎn)任務(wù)的時間最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點F(0,1)和直線l1:y=-1,過定點F與直線l1相切的動圓的圓心為點C.
(Ⅰ)求動點C的軌跡方程;
(Ⅱ)過點F的直線l2交軌跡于兩點P、Q,交直線l1于點R,求
RP
RQ
最小值,并求此時的直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個扇形的圓心角為
π
3
弧度,它的圓心角所對的弦長為3,則這個扇形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x+3
+
1
2-x
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{bn}是等比數(shù)列,其前n項和為Sn=2n-k(k∈R).
(1)求數(shù)列{bn}的通項公式;
(2)若an=log2bn+3,求數(shù)列{anbn}的前項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A={1,4},B={2x,1},且A=B,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:
1
n(n+1)
=
1
n
-
1
n+1
,
1
n(n+1)(n+2)
=
1
2n(n+1)
-
1
2(n+1)(n+2)
.由以上兩式,可以類比得到:
1
n(n+1)(n+2)(n+3)
=
 

查看答案和解析>>

同步練習(xí)冊答案