已知點P是拋物線y2=4x上一動點,則點P到點A(0,-2)的距離與到直線x=-1的距離的最小值是(  )
A、
5
B、
3
C、2
D、
2
考點:拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)A(0,-2),先求出焦點及準線方程,過P作PN垂直直線x=-1,有|PN|=|PF|,連接F、A,有|FA|≤|PA|+|PF|,從而只求|FA|.
解答: 解:設(shè)A(0,-2),由y2=4x得p=2,
p
2
=1,
所以拋物線的焦點為F(1,0),準線x=-1,
過P作PN垂直直線x=-1,根據(jù)拋物線的定義,
拋物線上一點到定直線的距離等于到焦點的距離,
所以有|PN|=|PF|,連接F、A,有|FA|≤|PA|+|PF|,
所以P為AF與拋物線的交點,點P到點A(0,-2)的距離與點P到直線X=-1的距
離之和的最小值為|FA|=
12+22
=
5
,
故選:A
點評:本題考查拋物線的定義及簡單性質(zhì),考查數(shù)形結(jié)合思想,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若sinA:sinB:sinC=m:n:1,且a+b+c=s,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x-a,方程f(f(x))=0有不等的4個實根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式x2-
a
x≥0對任意實數(shù)x都成立,則實數(shù)a的取值是( 。
A、{0}B、{0,1}
C、(0,1)D、[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2=-
1
2
y的準線方程是( 。
A、y=
1
8
B、y=
1
2
C、x=
1
8
D、x=
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線l:y=kx-2與拋物線C:x2=-2py(p>0)交于A,B兩點,O為坐標原點,
OA
+
OB
=(-4,-12).
(1)求直線l和拋物線C的方程;
(2)拋物線上一動點P從A到B運動時,求△ABP面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作(x)=m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=log
1
2
|x-{x}|的四個命題:
①函數(shù)y=f(x)的定義域為R,值域為[1,+∞);
②函數(shù)y=f(x)在(-
1
2
,0)上是增函數(shù);
③函數(shù)y=f(x)是周期函數(shù),最小正周期為1;
④函數(shù)y=f(x)的圖象關(guān)于直線x=
k
2
(k∈Z)對稱.
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知f(x+y)=f(x)+f(y),且f(1)=2,則f(1)+f(2)+…+f(n)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將二次函數(shù)y=-x2的圖象按
a
=(h,1)平移,使得平移后的圖象與函數(shù)y=x2-x-2的圖象有兩個不同的公共點A和B,且向量
OA
+
OB
(O為原點)與向量
b
=(2,-4)共線,求平移后的圖象的解析式.

查看答案和解析>>

同步練習(xí)冊答案