給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作(x)=m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=log
1
2
|x-{x}|的四個(gè)命題:
①函數(shù)y=f(x)的定義域?yàn)镽,值域?yàn)閇1,+∞);
②函數(shù)y=f(x)在(-
1
2
,0)上是增函數(shù);
③函數(shù)y=f(x)是周期函數(shù),最小正周期為1;
④函數(shù)y=f(x)的圖象關(guān)于直線(xiàn)x=
k
2
(k∈Z)對(duì)稱(chēng).
其中正確命題的序號(hào)是
 
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)讓函數(shù)解析式有意義的原則確定函數(shù)的定義域,然后根據(jù)解析式易用分析法求出函數(shù) 值域;易判斷函數(shù)y=f(x)在[-
1
2
,0)上的單調(diào)性,判斷f(x+1)=f(x)是否成立,可以判斷③的正誤;根據(jù)f(k-x)與f(-x)的關(guān)系,可以判斷函數(shù)y=f(x)的圖象是否關(guān)于直線(xiàn)x=
k
2
(k∈Z)對(duì)稱(chēng);而由④的結(jié)論.
解答: 解:由題意令g(x)=x-{x}=x-m,
g(x)=|x-{x}|=|x-m|,
m=0時(shí),-
1
2
<x≤
1
2
,g(x)=|x|,

m=1時(shí),1-
1
2
<x≤1+
1
2
,g(x)=|x-1|,
m=2時(shí),2-
1
2
<x≤2+
1
2
,g(x)=|x-2|,
由圖象可知0≤g(x)≤
1
2

所以①不正確;
當(dāng)x∈(-
1
2
,0),g(x)是減函數(shù),所以f(x)=log
1
2
|x-{x}|是增函數(shù);故②正確;
由圖可知③④正確;
故答案為:②③④
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是利用函數(shù)的三要素、性質(zhì)判斷命題的真假,我們要根據(jù)定義中給出的函數(shù),結(jié)合求定義域、值域的方法,及對(duì)稱(chēng)性、周期性和單調(diào)性的證明方法,對(duì)4個(gè)結(jié)論進(jìn)行驗(yàn)證.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將邊長(zhǎng)為l的三個(gè)正方形面板粘合成一個(gè)空間圖形,其水平放置的直觀圖如圖所示.
(1)若E、F分別是A1B1、BB1的中點(diǎn),試判斷D1E與CF是否共面,并說(shuō)明理由;
(2)以此空間圖形為盛水容器,如果能保證粘合處都不漏水,那么此容器最多能盛多少體積的水?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知車(chē)輪旋轉(zhuǎn)的角度與時(shí)間的平方成正比,如果車(chē)輛啟動(dòng)后車(chē)輪轉(zhuǎn)動(dòng)第一圈需要0.8s,求轉(zhuǎn)動(dòng)開(kāi)始后第3.2s時(shí)的瞬時(shí)角速度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是拋物線(xiàn)y2=4x上一動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)A(0,-2)的距離與到直線(xiàn)x=-1的距離的最小值是( 。
A、
5
B、
3
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓x2+
y2
a2
=1(0<a<1)上離頂點(diǎn)A(0,a)距離最遠(yuǎn)的點(diǎn)恰好是另一個(gè)頂點(diǎn)A′(0,-a),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四面體ABCD中,M、N分別是△ABC和△ACD的重心,求證:
(1)MN∥平面ABD;
(2)若BD⊥DC,MN⊥AD,則BD⊥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=kx+b的圖象與x軸、y軸分別相交于點(diǎn)A、B,
AB
=2
i
+2
j
,函數(shù)g(x)=x2-x-6;
(1)求k、b的值;
(2)當(dāng)滿(mǎn)足f(x)>g(x)時(shí),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-|x|+2a-1(a為常數(shù)).
(1)若a=1,作出函數(shù)f(x)的圖象;
(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)為4,寬為3的矩形ABCD的外接圓為圓O,在圓O內(nèi)任取M,點(diǎn)M在△ABC內(nèi)的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案