設(shè)分別是橢圓的左,右焦點。
(1)若是第一象限內(nèi)該橢圓上的一點,且·=求點的坐標(biāo)。
(2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中O為坐標(biāo)原點),求直線的斜率的取值范圍。

(1)(2)

解析試題分析:(Ⅰ)易知。

,
………………………………3分
聯(lián)立,解得 ………………5分
(Ⅱ)顯然 …………………………………………6分
可設(shè)
聯(lián)立
 ……………………………………7分
 
  ①  …………………………………………8分
,
  ………………………………………………9分



 ②  ……………………………………11分
綜①②可知 …………12分
考點:向量的坐標(biāo)運算及直線與橢圓位置關(guān)系
點評:將為銳角轉(zhuǎn)化為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點在坐標(biāo)原點,它的準(zhǔn)線經(jīng)過雙曲線的左焦點且垂直于的兩個焦點所在的軸,若拋物線與雙曲線的一個交點是
(1)求拋物線的方程及其焦點的坐標(biāo);
(2)求雙曲線的方程及其離心率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)設(shè)橢圓與拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上至少取兩個點,將其坐標(biāo)記錄于下表中:













 
1)求,的標(biāo)準(zhǔn)方程, 并分別求出它們的離心率
2)設(shè)直線與橢圓交于不同的兩點,且(其中坐標(biāo)原點),請問是否存在這樣的直線過拋物線的焦點若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
已知拋物線與直線交于兩點.
(Ⅰ)求弦的長度;
(Ⅱ)若點在拋物線上,且的面積為,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分) 已知動圓過定點,且與直線相切,橢圓 的對稱軸為坐標(biāo)軸,一個焦點是,點在橢圓上.
(Ⅰ)求動圓圓心的軌跡的方程及其橢圓的方程;
(Ⅱ)若動直線與軌跡處的切線平行,且直線與橢圓交于兩點,問:是否存在著這樣的直線使得的面積等于?如果存在,請求出直線的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知橢圓C:的上頂點坐標(biāo)為,離心率為.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)P為橢圓上一點,A為左頂點,F(xiàn)為橢圓的右焦點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知橢圓C:以雙曲線的焦點為頂點,其離心率與雙曲線的離心率互為倒數(shù).
(1)求橢圓C的方程;
(2)若橢圓C的左、右頂點分別為點A,B,點M是橢圓C上異于A,B的任意一點.
①求證:直線MA,MB的斜率之積為定值;
②若直線MA,MB與直線x=4分別交于點P,Q,求線段PQ長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知拋物線的焦點為,準(zhǔn)線為,過上一點P作拋物線的兩切線,切點分別為A、B,
(1)求證:;
(2)求證:A、F、B三點共線;
(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

斜率為k的直線過點P(0,1),與雙曲線交于A,B兩點. 
(1)求實數(shù)k的取值范圍;
(2)若以AB為直徑的圓過坐標(biāo)原點,求k的值.

查看答案和解析>>

同步練習(xí)冊答案