已知拋物線的頂點在坐標(biāo)原點,它的準(zhǔn)線經(jīng)過雙曲線的左焦點且垂直于的兩個焦點所在的軸,若拋物線與雙曲線的一個交點是
(1)求拋物線的方程及其焦點的坐標(biāo);
(2)求雙曲線的方程及其離心率

(1) ;(2)

解析試題分析:(1)由題意可設(shè)拋物線的方程為
代入方程,得 
因此,拋物線的方程為
于是焦點 
(2)拋物線的準(zhǔn)線方程為,
所以, 
而雙曲線的另一個焦點為,于是 
 
因此,         
又因為,所以
于是,雙曲線的方程 為 
因此,雙曲線的離心率
考點:本題主要考查拋物線的標(biāo)準(zhǔn)方程、幾何性質(zhì),雙曲線的定義、標(biāo)準(zhǔn)方程及幾何性質(zhì)。
點評:基礎(chǔ)題,圍繞的定義、標(biāo)準(zhǔn)方程及幾何性質(zhì)而命制的題目較為常見,a,b,c,e的關(guān)系要清楚。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,拋物線的頂點為坐標(biāo)原點,焦點軸上,準(zhǔn)線與圓相切.

(Ⅰ)求拋物線的方程;
(Ⅱ)若點在拋物線上,且,求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
如圖,已知橢圓的焦點為,離心率為,過點的直線交橢圓、兩點.

(1)求橢圓的方程;
(2)①求直線的斜率的取值范圍;
②在直線的斜率不斷變化過程中,探究是否總相等?若相等,請給出證明,若不相等,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知點是橢圓的右頂點,若點在橢圓上,且滿足.(其中為坐標(biāo)原點)

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,當(dāng)時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的頂點與雙曲線的焦點重合,它們的離心率之和為,若橢圓的焦點在軸上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分) 已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點,左焦點為,且過,設(shè)點.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.已知雙曲線的中心在原點,對稱軸為坐標(biāo)軸,一條漸近線方程為,右焦點,雙曲線的實軸為,為雙曲線上一點(不同于),直線,分別與直線交于兩點
(1)求雙曲線的方程;
(2)是否為定值,若為定值,求出該值;若不為定值,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知橢圓經(jīng)過點,且其右焦點與拋物線的焦點F重合.
(Ⅰ)求橢圓的方程;
(II)直線經(jīng)過點與橢圓相交于A、B兩點,與拋物線相交于C、D兩點.求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)分別是橢圓的左,右焦點。
(1)若是第一象限內(nèi)該橢圓上的一點,且·=求點的坐標(biāo)。
(2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中O為坐標(biāo)原點),求直線的斜率的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案