等差數(shù)列{an}的前n項和為Sn,已知S14<0,S15>0,則n=
 
時此數(shù)列的前n項和取得最小值.
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:由已知條件推導出a8>0,a7+a8<0,由此能求出結(jié)果.
解答: 解:∵等差數(shù)列{an}的前n項和是Sn,S14<0,S15>0,
∴14a1+91d<0,15a1+105d>0
∴a8>0,a7+a8<0,
∴n=7時,Sn最。
故答案為:7.
點評:本題考查等差數(shù)列的前n項和最小值的求法,解題時要認真審題,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
log2(2x-1)
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明不等式
a+1
-
a
a-1
-
a-2
(a≥2)所用的最合適的方法是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若0<a<1,x>y>1,將ax,xa,ay,ya從小到大排列為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=(
1
2
 x2-2x的增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若z=-1+(
1+i
1-i
)2011
,則z=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
lnx
x
-1的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

動圓C與定圓C1:(x+3)2+y2=32內(nèi)切,與定圓C2:(x-3)2+y2=8外切,A點坐標為(0,
9
2
).
(1)求動圓C的圓心C的軌跡方程和離心率;
(2)若軌跡C上的兩點P,Q滿足
AP
=5
AQ
,求|PQ|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(-2,0)是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)與圓F:(x-c)2+y2=9的一個交點,且圓心F是橢圓的一個交點.
(1)求橢圓C的方程;
(2)過F的直線交圓與P、Q兩點,連AP、AQ分別交橢圓與M、N點,試問直線MN是否過定點?若過定點,則求出定點坐標;若不過定點,請說明理由.

查看答案和解析>>

同步練習冊答案