(本小題滿分14分)已知圓及定點(diǎn),點(diǎn)是圓上的動(dòng)點(diǎn),點(diǎn)上,點(diǎn)上,
且滿足=2,·.
(1)若,求點(diǎn)的軌跡的方程;
(2)若動(dòng)圓和(1)中所求軌跡相交于不同兩點(diǎn),是否存在一組正實(shí)數(shù),使得直線垂直平分線段,若存在,求出這組正實(shí)數(shù);若不存在,說明理由.

解:(1) 
∴點(diǎn)的中點(diǎn),

點(diǎn)與點(diǎn)重合.
           …………2分

∴點(diǎn)的軌跡是以為焦點(diǎn)的橢圓,
,
 
∴G的軌跡方程是   …………6分
(2)解:不存在這樣一組正實(shí)數(shù),
下面證明:                        …………7分
由題意,若存在這樣的一組正實(shí)數(shù),
當(dāng)直線的斜率存在時(shí),設(shè)之為,
故直線的方程為:,
設(shè)中點(diǎn),
,兩式相減得:
.…………9分
注意到,
 ,
 ,     ②
又點(diǎn)在直線上,

代入②式得:
因?yàn)橄?img src="http://thumb.zyjl.cn/pic5/tikupic/7f/4/1inqz2.gif" style="vertical-align:middle;" />的中點(diǎn)在⑴所給橢圓內(nèi),
,
這與矛盾,
所以所求這組正實(shí)數(shù)不存在.                 …………13分
當(dāng)直線的斜率不存在時(shí),
直線的方程為,
則此時(shí)
代入①式得,
這與是不同兩點(diǎn)矛盾.
綜上,所求的這組正實(shí)數(shù)不存在.       …………14分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案