科目: 來源: 題型:
【題目】在同一直角坐標系中,拋物線C1:2與拋物線C2:2關于軸對稱,C2與軸交于A、B兩點,其中點A在點B的左側交y軸于點D.
(1)求A、B兩點的坐標;
(2)對于拋物線C2:2在第三象限部分的一點P,作PF⊥軸于F,交AD于點E,若E關于PD的對稱點E′恰好落在軸上,求P點坐標;
(3)在拋物線C1上是否存在一點G,在拋物線C2上是否存在一點Q,使得以A、B、G、Q四點為頂點的四邊形是平行四邊形?若存在,求出G、Q兩點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=1,點P在線段AB上運動,設AP=,現將紙片折疊,使點D與點P重合,得折痕EF(點E、F為折痕與矩形邊的交點),再將紙片還原.
(1)當=0時,折痕EF的長為 ;當點E與點A重合時,折痕EF的長為 ;
(2)請寫出使四邊形EPFD為菱形的的取值范圍,并求出當=2時菱形的邊長;
(3)令EF2=,當點E在AD、點F在BC上時,寫出與的函數關系式.當取最大值時,判斷△EAP與△PBF是否相似?若相似,求出的值;若不相似,請說明理由.溫馨提示:用草稿紙折折看,或許對你有所幫助哦!
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按擬定的價格進行試銷,通過對5天的試銷情況進行統(tǒng)計,得到如下數據:
(1)通過對上面表格中的數據進行分析,發(fā)現銷量y(件)與單價(元/件)之間存在一次函數關系,求y關于的函數關系式(不需要寫出函數自變量的取值范圍);
(2)預計在今后的銷售中,銷量與單價仍然存在(2)中的關系,且該產品的成本是20元/件.為使工廠獲得最大利潤,該產品的單價應定為多少?
(3)為保證產品在實際試銷中銷售量不得低于30件,且工廠獲得得利潤不得低于400元,請直接寫出單價的取值范圍;
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC,△EFG分別是邊長為2和1的等邊三角形,D是邊BC,EF的中點,直線AG,FC相交于點M,當△EFG繞點D旋轉一周時,點M經過的路徑長為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,過原點的直線與反比例函數y=(x>0)、反比例函數y=(x>0)的圖象分別交于A、B兩點,過點A作y軸的平行線交反比例函數y=(x>0)的圖象于C點,以AC為邊在直線AC的右側作正方形ACDE,點B恰好在邊DE上,則正方形ACDE的面積為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】規(guī)定:經過三角形的一個頂點且將三角形的周長分成相等的兩部分的直線叫做該角形的“等周線”,“等周線”被這個三角形截得的線段叫做該三角形的“等周徑”.例如等腰三角形底邊上的中線即為它的“等周徑”Rt△ABC中,∠C=90°,AC=4,BC=3,若直線為△ABC的“等周線”,則△ABC的所有“等周徑”長為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在ABCD中,以點A為圓心AB長為半徑作弧交AD于點F,分別以點B、F為圓心,同樣長度m為半徑作弧,交于點G,連結AG并延長交BC于點E,若BF=6,AB=4,則AE的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,頂點為M的拋物線y=ax2+bx+3與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C
(1)求拋物線的表達式;
(2)在直線AC的上方的拋物線上,有一點P(不與點M重合),使△ACP的面積等于△ACM的面積,請求出點P的坐標;
(3)在y軸上是否存在一點Q,使得△QAM為直角三角形?若存在,請直接寫出點Q的坐標:若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某食品廠生產一種半成品食材,成本為2元/千克,每天的產量P(百千克)與銷售價格x(元/千克)滿足函數關系式p=x+8.從市場反饋的信息發(fā)現,該食材每天的市場需求量q(百千克)與銷售價格x(元/千克)滿足一次函數關系,部分數據如表:
銷售價格x(元/千克) | 2 | 4 | …… | 10 |
市場需求量q(百千克) | 12 | 10 | …… | 4 |
已知按物價部門規(guī)定銷售價格x不低于2元/千克且不高于10元/千克,
(1)直接寫出q與x的函數關系式,并注明自變量x的取值范圍;
(2)當每天的產量小于或等于市場需求量時,這種食材能全部售出;當每天的產量大于市場需求量時,只能售出市場需求的量,而剩余的食材由于保質期短作廢棄處理;
①當每天的食材能全部售出時,求x的取值范圍;
②求廠家每天獲得的利潤y(百元)與銷售價格x的函數關系式;
(3)在(2)的條件下,當x為多少時,y有最大值,并求出最大利潤.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,BM是以AB為直徑的⊙O的切線,B為切點,BC平分∠ABM,弦CD交AB于點E,DE=OE.
(1)求證:△ACB是等腰直角三角形;
(2)求證:OA2=OEDC:
(3)求tan∠ACD的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com