相關習題
 0  363137  363145  363151  363155  363161  363163  363167  363173  363175  363181  363187  363191  363193  363197  363203  363205  363211  363215  363217  363221  363223  363227  363229  363231  363232  363233  363235  363236  363237  363239  363241  363245  363247  363251  363253  363257  363263  363265  363271  363275  363277  363281  363287  363293  363295  363301  363305  363307  363313  363317  363323  363331  366461 

科目: 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B60°,∠D30°,ABBC

1)求∠A+∠C的度數(shù);

2)連接BD,探究AD,BD,CD三者之間的數(shù)量關系,并說明理由;

3)若AB1,點E在四邊形ABCD內部運動,且滿足AE2BE2+CE2,求點E運動路徑的長度.

查看答案和解析>>

科目: 來源: 題型:

【題目】(1)某學校智慧方園數(shù)學社團遇到這樣一個題目:

如圖1,在ABC中,點O在線段BC上,∠BAO=30°,OAC=75°,AO=,BO:CO=1:3,求AB的長.

經(jīng)過社團成員討論發(fā)現(xiàn),過點BBDAC,交AO的延長線于點D,通過構造ABD就可以解決問題(如圖2).

請回答:∠ADB=   °,AB=   

(2)請參考以上解決思路,解決問題:

如圖3,在四邊形ABCD中,對角線ACBD相交于點O,ACAD,AO=,ABC=ACB=75°,BO:OD=1:3,求DC的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】某大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設你站在橋上測得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請求出立柱BH的長.(結果精確到0.1米, ≈1.73

查看答案和解析>>

科目: 來源: 題型:

【題目】我國古代偉大的數(shù)學家劉微將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示若a3,b4,則該三角形的面積為( 。

A. 10B. 12C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】在正方形ABCD中,AB6,連接AC,BDP是正方形邊上或對角線上一點,若PD2AP,則AP的長為_____

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,正△ABC的邊長為3cm,動點P從點A出發(fā),以每秒1cm的速度,沿的方向運動,到達點C時停止,設運動時間為x(秒),,y關于x的函數(shù)的圖像大致為( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,直線x軸、y軸分別交于A,B兩點,COB的中點,DAB上一點,四邊形OEDC是菱形,則OAE的面積為________

查看答案和解析>>

科目: 來源: 題型:

【題目】某公司投入研發(fā)費用40萬元(40萬元只計入第一年成本),成功研發(fā)出一種產(chǎn)品.公司按訂單生產(chǎn)(產(chǎn)量=銷售量),第一年該產(chǎn)品正式投產(chǎn)后,生產(chǎn)成本為4/件.此產(chǎn)品年銷售量y(萬件)與售價x(元件)之間滿足函數(shù)關系式y=﹣x+20

(1)求這種產(chǎn)品第一年的利潤W(萬元)與售價x(元件)滿足的函數(shù)關系式;

(2)該產(chǎn)品第一年的利潤為24萬元,那么該產(chǎn)品第一年的售價是多少?

(3)第二年,該公司將第一年的利潤24萬元(24萬元只計入第二年成本)再次投入研發(fā),使產(chǎn)品的生產(chǎn)成本降為3/件.為保持市場占有率,公司規(guī)定第二年產(chǎn)品售價不超過第一年的售價,另外受產(chǎn)能限制,銷售量無法超過10萬件.請計算該公司第二年的利潤W2至少為多少萬元.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調查統(tǒng)計,現(xiàn)從該校隨機抽取n名學生作為樣本,采用問卷調查的方式收集數(shù)據(jù)參與問卷調查的每名學生只能選擇其中一項,并根據(jù)調查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中提供的信息,解答下列問題:

補全條形統(tǒng)計圖;

若該校共有學生2400名,試估計該校喜愛看電視的學生人數(shù).

若調查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名,求恰好抽到2名男生的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】在△ABC中,∠ACB=90°,AB=25,BC=15.

(1)如圖1,折疊△ABC使點A落在AC邊上的點D處,折痕交AC、AB分別于Q、H,若SABC=9SDHQ,則HQ   

(2)如圖2,折疊△ABC使點A落在BC邊上的點M處,折痕交AC、AB分別于E、F.若FMAC,求證:四邊形AEMF是菱形;

(3)在(1)(2)的條件下,線段CQ上是否存在點P,使得△CMP和△HQP相似?若存在,求出PQ的長;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案