精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在四邊形ABCD中,∠B60°,∠D30°,ABBC

1)求∠A+∠C的度數;

2)連接BD,探究ADBD,CD三者之間的數量關系,并說明理由;

3)若AB1,點E在四邊形ABCD內部運動,且滿足AE2BE2+CE2,求點E運動路徑的長度.

【答案】1270°;(2DB2DA2+DC2;(3

【解析】

(1)利用四邊形內角和定理計算即可;

(2)連接BD.以BD為邊向下作等邊三角形BDQ.想辦法證明DCQ是直角三角形即可解決問題;

(3)如圖3中,連接AC,將ACE繞點A順時針旋轉60°得到ABR,連接RE.想辦法證明∠BEC=150°即可解決問題.

(1)如圖1中,

在四邊形ABCD中,

∵∠A+B+C+D=360°,B=60°,C=30°,

∴∠A+C=360°﹣60°﹣30°=270°;

(2)如圖2中,結論:DB2=DA2+DC2,

理由:連接BD,BD為邊向下作等邊三角形BDQ,

∵∠ABC=DBQ=60°,

∴∠ABD=CBQ,

AB=BC,DB=BQ,

∴△ABD≌△CBQ,

AD=CQ,A=BCQ,

∵∠A+BCD=BCQ+BCD=270°,

∴∠DCQ=90°,

DQ2=DC2+CQ2,

CQ=DA,DQ=DB,

DB2=DA2+DC2;

(3)如圖3中,

連接AC,將ACE繞點A順時針旋轉60°得到ABR,連接RE,AER是等邊三角形,

EA2=EB2+EC2,EA=RE,EC=RB,

RE2=RB2+EB2

∴∠EBR=90°,

∴∠RAE+RBE=150°,

∴∠ARB+AEB=AEC+AEB=210°,

∴∠BEC=150°,

∴點E的運動軌跡在O為圓心的圓上,在⊙O上取一點K,連接KB,KC,OB,OC,

∵∠K+BEC=180°,

∴∠K=30°,BOC=60°,

OB=OC,

∴△OBC是等邊三角形,

∴點E的運動路徑

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=30°,BC=2,點D是邊AB上的動點,將△ACD沿CD所在的直線折疊至△CDA的位置,CA'AB于點E.若△A'ED為直角三角形,則AD的長為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在初中階段的函數學習中,我們經歷了“確定函數的表達式——利用函數圖象研究其性質一一運用函數解決問題"的學習過程.在畫函數圖象時,我們通過描點或平移的方法畫出了所學的函數圖象.同時,我們也學習了絕對值的意義.結合上面經歷的學習過程,現在來解決下面的問題在函數中,當時,時,

1)求這個函數的表達式;

2)在給出的平面直角坐標系中,請用你喜歡的方法畫出這個函數的圖象井并寫出這個函數的一條性質;

3)已知函的圖象如圖所示,結合你所畫的函數圖象,直接寫出不等式的解集.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與雙曲線交于點A,過點AO的平行線交雙曲線于點B,連接AB并延長與y軸交于點,則k的值為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正△ABC的邊長為3cm,動點P從點A出發(fā),以每秒1cm的速度,沿的方向運動,到達點C時停止,設運動時間為x(秒),,y關于x的函數的圖像大致為( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD,∠BED60°,∠ABE的角平分線與∠CDE的角平分線交于點F,則∠DFB=(  )

A. 150°B. 120°C. 100°D. 135°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知△ABC是等腰直角三角形,ABAC,D為平面內的任意一點,且滿足CDAC,若△ADB是以AD為腰的等腰三角形,則∠CDB的度數為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2-2ax-3aa≠0)頂點為P,且該拋物線與x軸交于A,B兩點(點A在點B的左側).我們規(guī)定:拋物線與x軸圍成的封閉區(qū)域稱為G區(qū)域(不包含邊界);橫、縱坐標都是整數的點稱為整點.

1)求拋物線y=ax2-2ax-3a頂點P的坐標(用含a的代數式表示);

2)如果拋物線y=ax2-3ax-3a經過(1,3).

①求a的值;

②在①的條件下,直接寫出G區(qū)域內整點的個數.

3)如果拋物線y=ax2-2ax-3aG區(qū)域內有4個整點,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數的圖象交x軸于點A,B(點A在點B的左側).

1)求點A,B的坐標,并根據該函數圖象寫出y0x的取值范圍;

2)把點B向上平移m個單位得點B1.若點B1向左平移n個單位,將與該二次函數圖象上的點B2重合;若點B1向左平移(n6)個單位,將與該二次函數圖象上的點B3重合.已知m0,n0,求mn的值.

查看答案和解析>>

同步練習冊答案