【題目】(1)某學(xué)校智慧方園數(shù)學(xué)社團(tuán)遇到這樣一個(gè)題目:

如圖1,在ABC中,點(diǎn)O在線段BC上,∠BAO=30°,OAC=75°,AO=,BO:CO=1:3,求AB的長.

經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點(diǎn)BBDAC,交AO的延長線于點(diǎn)D,通過構(gòu)造ABD就可以解決問題(如圖2).

請(qǐng)回答:∠ADB=   °,AB=   

(2)請(qǐng)參考以上解決思路,解決問題:

如圖3,在四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,ACAD,AO=,ABC=ACB=75°,BO:OD=1:3,求DC的長.

【答案】(1)75;4;(2)CD=4

【解析】(1)根據(jù)平行線的性質(zhì)可得出∠ADB=OAC=75°,結(jié)合∠BOD=COA可得出BOD∽△COA,利用相似三角形的性質(zhì)可求出OD的值,進(jìn)而可得出AD的值,由三角形內(nèi)角和定理可得出∠ABD=75°=ADB,由等角對(duì)等邊可得出AB=AD=4,此題得解;

(2)過點(diǎn)BBEADAC于點(diǎn)E,同(1)可得出AE=4,在RtAEB中,利用勾股定理可求出BE的長度,再在RtCAD中,利用勾股定理可求出DC的長,此題得解.

1)BDAC,

∴∠ADB=OAC=75°.

∵∠BOD=COA,

∴△BOD∽△COA,

又∵AO=3,

OD=AO=,

AD=AO+OD=4

∵∠BAD=30°,ADB=75°,

∴∠ABD=180°-BAD-ADB=75°=ADB,

AB=AD=4

(2)過點(diǎn)BBEADAC于點(diǎn)E,如圖所示.

ACAD,BEAD,

∴∠DAC=BEA=90°.

∵∠AOD=EOB,

∴△AOD∽△EOB,

BO:OD=1:3,

AO=3,

EO=,

AE=4

∵∠ABC=ACB=75°,

∴∠BAC=30°,AB=AC,

AB=2BE.

RtAEB中,BE2+AE2=AB2,即(42+BE2=(2BE)2,

解得:BE=4,

AB=AC=8,AD=12.

RtCAD中,AC2+AD2=CD2,即82+122=CD2,

解得:CD=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第一、三象限內(nèi)的、兩點(diǎn),與軸交于點(diǎn),過點(diǎn)軸于點(diǎn),作軸于點(diǎn),,,點(diǎn)的坐標(biāo)為

(1)求四邊形的周長和面積.

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,ABC的平分線交AC于點(diǎn)E,過點(diǎn)EBE的垂線交AB于點(diǎn)F,OBEF的外接圓.

1)求證:ACO的切線;

2)過點(diǎn)EEHAB,垂足為H,求證:CD=HF;

3)若CD=1,EH=3,求BFAF長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E,FBC上兩點(diǎn),且BE=CFAF=DE

求證:(1△ABF≌△DCE;

  1. 四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017山東省日照市)如圖,在平面直角坐標(biāo)系中,經(jīng)過點(diǎn)A的雙曲線x0)同時(shí)經(jīng)過點(diǎn)B,且點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)A的橫坐標(biāo)為,∠AOB=∠OBA=45°,則k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮進(jìn)行百米賽跑,小明比小亮跑得快,如果兩人同時(shí)起跑,小明肯定贏,現(xiàn)在小明讓小亮先跑若干米,兩人的路程(米)分別與小明追趕時(shí)間(秒)的函數(shù)關(guān)系如圖所示。

小明讓小亮先跑了多少米?

分別求出表示小明、小亮的路程與時(shí)間的函數(shù)關(guān)系式。

誰將贏得這場(chǎng)比賽?請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=10,E,D分別是AB,AC上的點(diǎn),BE=4,CD=2,且BD=CE,則BD=________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,B=30°,AD是ABC的角平分線,DEBA交AC于點(diǎn)E,DFCA交AB于點(diǎn)F,已知CD=3.

(1)求AD的長;

(2)求四邊形AEDF的周長.(注意:本題中的計(jì)算過程和結(jié)果均保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DEBC,EFAB,則下列結(jié)論正確的是( 。

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案