科目: 來源: 題型:
【題目】某中學為了解九年級學生對三大球類運動的喜愛情況,從九年級學生中隨機抽取部分學生進行調查問卷,通過分析整理繪制了如下兩幅統(tǒng)計圖.請根據兩幅統(tǒng)計圖中的信息回答下列問題:
(1)求參與調查的學生中,喜愛排球運動的學生人數,并補全條形圖;
(2)若該中學九年級共有800名學生,請你估計該中學九年級學生中喜愛籃求運動的學生有多少名?
(3)若從喜愛足球運動的2名男生和2名女生中隨機抽取2名學生,確定為該校足球運動員的重點培養(yǎng)對象,請用列表法或畫樹狀圖的方法求抽取的兩名學生為一名男生和一名女生的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,邊長為1的正方形OABC的頂點O與原點重合,頂點A,C分別在x軸、y軸上,反比例函數y=(k≠0,x>0)的圖象與正方形的兩邊AB、BC分別交于點M、N,連接OM、ON、MN.若∠MON=45°,則k的值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,其對稱軸為直線x=﹣1,與x軸的交點為(x1,0)、(x2,0),其中0<x2<1,有下列結論:①b2﹣4ac>0;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④當m為任意實數時,a﹣b≤am2+bm;⑤3a+c=0.其中,正確的結論有( )
A.②③④B.①③⑤C.②④⑤D.①③④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E是邊BC上一點,連接AE,過點E作EM⊥AE,交對角線AC于點M,過點M作MN⊥AB,垂足為N,連接NE.
(1)求證:AE=NE+ME;
(2)如圖2,延長EM至點F,使EF=EA,連接AF,過點F作FH⊥DC,垂足為H.猜想CH與FH存在的數量關系,并證明你的結論;
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系內,點A,B的坐標分別為(1,0),(0,2),AC⊥AB,且AB=AC,直線BC交軸于點D,拋物線經過點A,B,D.
(1)求直線BC和拋物線的函數表達式;
(2)點P是直線BD下方的拋物線上一點,求△PCD面積的最大值,以及△PCD面積取得最大值時,點P的坐標;
(3)若點P的坐標為(2)小題中,△PCD的面積取得最大值時對應的坐標.平面內存在直線l,使點B,D,P到該直線的距離都相等,請直接寫出所有滿足條件的直線l的函數表達式.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于任意一個四位數,我們可以記為,即.若規(guī)定: 對四位正整數進行 F運算,得到整數.例如,;.
(1)計算:;
(2)當時,證明:的結果一定是4的倍數;
(3)求出滿足的所有四位數.
查看答案和解析>>
科目: 來源: 題型:
【題目】在疫情期間,某地推出線上名師公益大課堂,為廣大師生、其他社會人士提供線上專業(yè)知識學習、心理健康疏導.參與學習第一批公益課的人數達到2萬人,因該公益課社會反響良好,參與學習第三批公益課的人數達到2.42萬人.參與學習第二批、第三批公益課的人數的增長率相同.
(1)求這個增長率;
(2)據大數據統(tǒng)計,參與學習第三批公益課的人數中,師生人數在參與學習第二批公益課的師生人數的基礎上增加了80%;但因為已經部分復工,其他社會人士的人數在參與學習第二批公益課的其他社會人士人數的基礎上減少了60%.求參與學習第三批公益課的師生人數.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數的圖象經過點(,)和(,),完成下面問題:
(1)求函數的表達式;
(2)在給出的平面直角坐標系中,請用適當的方法畫出這個函數的圖象,并寫出這個函數的一條性質;
(3)已知函數的圖象如圖所示,結合你所畫出的圖象,直接寫出的解集.
查看答案和解析>>
科目: 來源: 題型:
【題目】經歷疫情復學后,學校開展了多種形式的防疫知識講座,并舉行了全員參加的“防疫”知識競賽,試卷題目共10題,每題10分.現分別從七年級1,2,3班中各隨機抽取10名同學的成績(單位:分).
收集整理數據如下:
分析數據:
平均數 | 中位數 | 眾數 | |
1班 | 83 | 80 | |
2班 | 83 | ||
3班 | 80 | 80 |
根據以上信息回答下列問題:
(1)請直接寫出表格中,,,的值;
(2)比較這三組樣本數據的平均數、中位數和眾數,你認為哪個班的成績比較好?請說明理由(一條理由即可);
(3)為了讓學生重視安全知識的學習,學校將給競賽成績滿分的同學頒發(fā)獎狀,該校七年級學生共120人,試估計需要準備多少張獎狀?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB∥CD,AD與BC相交于點E,AF平分∠BAD,交BC于點F,交CD的延長線于點G.
(1)若∠G=29°,求∠ADC的度數;
(2)若點F是BC的中點,求證:AB=AD+CD.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com