科目: 來源: 題型:
【題目】如圖,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于點H,連接CH.
(1)求證:△ACD≌△BCE;
(2)求證:CH平分∠AHE;
(3)求∠CHE的度數(shù).(用含α的式子表示)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示是二次函數(shù)y=ax2+bx+c的圖象.下列結(jié)論:①二次三項式ax2+bx+c的最大值為4;②使y≤3成立的x的取值范圍是x≤-2;③一元二次方程ax2+bx+c=1的兩根之和為-1;④該拋物線的對稱軸是直線x=-1;⑤4a-2b+c<0.其中正確的結(jié)論有______________.(把所有正確結(jié)論的序號都填在橫線上)
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點A的坐標(biāo)為(1,0),點D的坐標(biāo)為(0,3).延長CB交x軸于點A1,作正方形A1B1C1C;延長C1B1交x軸于點A2,作正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2017個正方形的面積為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】作圖題(不寫作法,保留作圖痕跡)
(1)如圖1請利用直尺和圓規(guī)作線段AB的中垂線EF;
(2)如圖2請利用直尺和圓規(guī)作∠AOB的角平分線OC;
(3)如圖3,要在公路MN上修一個車站P,使得P向AB兩個地方的距離和最小,請利用直尺和圓規(guī)畫出P的位置;
(4)如圖4,已知∠AOB及點C、D兩點,請利用直尺和圓規(guī)作一點P,使得點P到射線OA、OB的距離相等,且P點到點C、D的距離也相等;
(5)如圖5,利用網(wǎng)狀格畫出△ABC關(guān)于直線l的對稱圖形△A'B'C'.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,中線BE,CD相交于點O,連接DE,下列結(jié)論: ①=; ②=;③=;④=.其中正確的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】為積極響應(yīng)南充市創(chuàng)建“全國衛(wèi)生城市”的號召,某校1 500名學(xué)生參加了衛(wèi)生知識競賽,成績記為A、B、C、D四等。從中隨機(jī)抽取了部分學(xué)生成績進(jìn)行統(tǒng)計,繪制成如下兩幅不完整的統(tǒng)計圖表,根據(jù)圖表信息,以下說法不正確的是( )
A.樣本容量是200
B.D等所在扇形的圓心角為15°
C.樣本中C等所占百分比是10%
D.估計全校學(xué)生成績?yōu)锳等大約有900人
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=(x﹣3)2與x軸交于A、B兩點(點A在B的左側(cè)),與y軸交于C點,頂點D.
(1)求點A、B、D三點的坐標(biāo);
(2)連結(jié)CD交x軸于G,過原點O作OE⊥CD,垂足為H,交拋物線對稱軸于E,求出E點的縱坐標(biāo);
(3)以②中點E為圓心,1為半徑畫圓,在對稱軸右側(cè)的拋物線上有一動點P,過P作⊙E的切線,切點為Q,當(dāng)PQ的長最小時,求點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)接于⊙O,圓心O是正方形的對稱中心,⊙O的面積為S1,正方形的面積為S2,則以圓心O為頂點,作∠MON=90°,將∠MON繞O點旋轉(zhuǎn),OM、ON分別與⊙O交于E、F,分別于正方形ABCD交于G、H,設(shè)由OE、OF、EF及正方形ABCD的邊圍成的圖形(陰影部分)的面積為S,那么:
(1)如圖①,當(dāng)OM經(jīng)過點A時,S、S1、S2之間的關(guān)系(用S1、S2的代數(shù)式表示S)為 ;
(2)如圖②,當(dāng)OM⊥AB交于點G時,①中的結(jié)論還成立嗎?并說明理由;
(3)如圖③,∠MON旋轉(zhuǎn)到任意位置時,則①中的結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC與DE相交于點F,連接CD,EB.
(1)圖中還有幾對全等三角形,請你一一列舉;
(2)求證:CF=EF.
查看答案和解析>>
科目: 來源: 題型:
【題目】若關(guān)于x的方程x2+2(m﹣1)x+m2﹣2m﹣3=0(m為實數(shù)).
(1)求證:不論m為何值,該方程均有兩個不等的實根;
(2)解方程求出兩個根x1,x2(x1>x2),并求w=x1(x1+x2)+x12的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com