【題目】如圖正方形ABCD的邊長為4,點EAB上的一點,將BCE沿CE折疊至FCE,若CF,CE恰好與以正方形ABCD的中心為圓心的⊙O相切,則折痕CE的長為(

A. B. C. D.

【答案】B

【解析】

連接CO,由O點是正方形的中心可知,∠DCO=∠BCO;由切線長定理可知∠FCO=∠ECO,∠DCF=∠DCO-∠FCO=∠BCO-∠ECO=∠BCE,即∠DCF=∠BCE,由翻折可得∠ECF=∠BCE,故可得∠DCF=∠BCE=∠ECF,據(jù)此進(jìn)行解答即可.

連接CO,

由于點O是正方形ABCD的中心,故∠DCO=∠BCO=45°;CF、CE為圓心的⊙O切線,則根據(jù)切線長定理可知∠FCO=∠ECO,∠DCF=∠DCO-∠FCO=∠BCO-∠ECO=∠BCE,即∠DCF=∠BCE.再根據(jù)題干條件,將△BCE沿CE折疊至△FCE,∠ECF=∠BCE,故可得:

∠DCF=∠BCE=∠ECF=,RT△BCE中,CE=,

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)yx0)的圖象相交于點A、點B,與X軸交于點C,其中點A(﹣1,3)和點B(﹣3n).

1)填空:m   ,n   

2)求一次函數(shù)的解析式和AOB的面積.

3)根據(jù)圖象回答:當(dāng)x為何值時,kx+b≥(請直接寫出答案)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由8個大小相同的小正方體組合成的簡單幾何體.

(1)該幾何體的主視圖如圖所示,請在下面方格紙中分別畫出它的左視圖和俯視圖;(邊框線加粗畫出,并涂上陰影)

(2)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的俯視圖和主視圖不變,那么請在下列網(wǎng)格圖中畫出添加小正方體后所得幾何體所有可能的左視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,C=90°,AC=6,BC=8,動點PA點出發(fā),以1cm/s的速度,沿A—C—BB點運動,同時,動點QC點出發(fā),以2cm/s的速度,沿C—B—AA點運動,當(dāng)其中一點運動到終點時,兩點同時停止運動。設(shè)運動時間為t秒,當(dāng)t=_______秒時,PCQ的面積等于8cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個截面的邊緣為拋物線的拱橋橋洞,橋洞壁離水面AB的最大高度是2米,水面寬度AB為4米.把截面圖形放在如圖所示的平面直角坐標(biāo)系中.

(1)求這條拋物線對應(yīng)的函數(shù)表達(dá)式.

(2)若水面下降1米,求水面寬度增加了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,E為BC上一點,以CE為直徑作O,AB與O相切于點D,連接CD,若BE=OE=2.

(1)求證:A=2DCB;

(2)求圖中陰影部分的面積(結(jié)果保留π和根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形 中, ,點 為線段 上的動點,將 沿 折疊,使點 落在矩形內(nèi)點 處.下列結(jié)論正確的是________. (寫出所有正確結(jié)論的序號)

①當(dāng) 為線段 中點時, ;②當(dāng) 為線段 中點時, ;

③當(dāng) 三點共線時, ;④當(dāng) 三點共線時, .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠A=25°,以點C為圓心,BC為半徑的圓交AB于點D,交AC于點E,則的度數(shù)為(  )

A. 25° B. 30° C. 50° D. 65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑是4,點A,B,C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案