如圖已知拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(-3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)D的坐標(biāo)為(-2,0).問:直線AC上是否存在點(diǎn)F,使得△ODF是等腰三角形?若存在,請直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請說明理由.
(1)將點(diǎn)A(1,0)和點(diǎn)B(-3,0)代入拋物線解析式可得:
a+b+3=0
9a-3b+3=0
,
解得:
a=-1
b=-2
,
故所求拋物線解析式為:y=-x2-2x+3.

(2)存在符合條件的點(diǎn)P,

設(shè)直線AC的解析式為y=kx+m,
將點(diǎn)A及點(diǎn)C的坐標(biāo)代入可得:
k+m=0
m=3
,
解得:
k=-3
m=3
,
故直線AC的解析式為y=-3x+3,
①當(dāng)PD=PO時(shí),此時(shí)點(diǎn)P位于P1的位置,很明顯P1的坐標(biāo)為(-1,6);
②當(dāng)OD=OP時(shí),此時(shí)點(diǎn)P的一個(gè)位置為P2,
設(shè)P2的坐標(biāo)為(x,-3x+3),
∵OD=OP=2,
x2+(-3x+3)2
=2,
解得:x1=
18+
31
10
,x2=
18-
31
10
,
很明顯此時(shí)P的坐標(biāo)為(
18+
31
10
-54-
31
10
)或(
18-
31
10
,
-54+3
31
10
).
綜上可得點(diǎn)P的坐標(biāo)為(-1,6)或(
18+
31
10
,
-54-
31
10
)或(
18-
31
10
,
-54+3
31
10
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

某市舉行釣魚比賽,如圖,選手甲釣到了一條大魚,魚竿被拉彎近似可看作以A為最高點(diǎn)的一條拋物線,魚線AB長6m,魚隱約在水面了,估計(jì)魚離魚竿支點(diǎn)有8m,此時(shí)魚竿魚線呈一個(gè)平面,且與水平面夾腳α恰好為60°,以魚竿支點(diǎn)為原點(diǎn),則魚竿所在拋物線的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=x與拋物線y=
1
2
x2
交于A、B兩點(diǎn).
(1)求交點(diǎn)A、B的坐標(biāo);
(2)記一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)y=
1
2
x2
的函數(shù)值為y2.若y1>y2,求x的取值范圍;
(3)在該拋物線上存在幾個(gè)點(diǎn),使得每個(gè)點(diǎn)與AB構(gòu)成的三角形為等腰三角形?并求出不少于3個(gè)滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線:y=
1
2
x2+bx+c
與x軸交于A、B(A在B左側(cè)),頂點(diǎn)為C(1,-2),
(1)求此拋物線的關(guān)系式;并直接寫出點(diǎn)A、B的坐標(biāo).
(2)求過A、B、C三點(diǎn)的圓的半徑.
(3)在拋物線上找點(diǎn)P,在y軸上找點(diǎn)E,使以A、B、P、E為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P、E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
k
x
相交于點(diǎn)A,B.已知點(diǎn)A的坐標(biāo)為(1,4),點(diǎn)B在第三象限內(nèi),連結(jié)AB交y軸于點(diǎn)E,且S△BOE=
2
3
S△AOB(O為坐標(biāo)原點(diǎn)).
(1)求此拋物線的函數(shù)關(guān)系式;
(2)過點(diǎn)A作直線平行于x軸交拋物線于另一點(diǎn)C.問在y軸上是否存在點(diǎn)P,使△POC與△OBE相似,若存在,求出點(diǎn)P的坐標(biāo);若不存在,請簡要說明理由;
(3)拋物線與x軸的負(fù)半軸交于點(diǎn)D,過點(diǎn)B作直線ly軸,點(diǎn)Q在直線l上運(yùn)動(dòng),且點(diǎn)Q的縱坐標(biāo)為t,試探索:當(dāng)S△AOB<S△QOD<S△BOC時(shí),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,現(xiàn)將一塊腰長為
5
的等腰直角三角板ABC放在第三象限,斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,-2),直角頂點(diǎn)C在x軸的負(fù)半軸上(如圖所示),拋物線y=ax2+ax+2經(jīng)過點(diǎn)B.
(1)點(diǎn)C的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,把矩形OCBA放置于直角坐標(biāo)系中,OC=3,BC=2,取AB的中點(diǎn)M,連結(jié)MC,把△MBC沿x軸的負(fù)方向平移OC的長度后得到△DAO.
(1)直接寫出點(diǎn)D的坐標(biāo);
(2)已知點(diǎn)B與點(diǎn)D在經(jīng)過原點(diǎn)的拋物線上,點(diǎn)P在第一象限內(nèi)的該拋物線上移動(dòng),過點(diǎn)P作PQ⊥x軸于點(diǎn)Q,連結(jié)OP.若以O(shè)、P、Q為頂點(diǎn)的三角形與△DAO相似,試求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線經(jīng)過A(-1,0),B(5,0),C(0,-
5
2
)三點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A點(diǎn)坐標(biāo)為(-3,0),B點(diǎn)坐標(biāo)為(12,0),以AB為直徑作⊙P與y軸的負(fù)半軸交于點(diǎn)C.拋物線y=ax2+bx+c經(jīng)過A、B、C三點(diǎn),其頂點(diǎn)為M點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)點(diǎn)D是拋物線與⊙P的第四個(gè)交點(diǎn)(除A、B、C三點(diǎn)以外),求直線MD的解析式;
(3)判定(2)中的直線MD與⊙P的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案