如圖,已知直線y=x與拋物線y=
1
2
x2
交于A、B兩點.
(1)求交點A、B的坐標;
(2)記一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)y=
1
2
x2
的函數(shù)值為y2.若y1>y2,求x的取值范圍;
(3)在該拋物線上存在幾個點,使得每個點與AB構(gòu)成的三角形為等腰三角形?并求出不少于3個滿足條件的點P的坐標.
(1)如圖,∵直線y=x與拋物線y=
1
2
x2
交于A、B兩點,
y=x
y=
1
2
x2

解得,
x=0
y=0
x=2
y=2

∴A(0,0),B(2,2);

(2)由(1)知,A(0,0),B(2,2).
∵一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)y=
1
2
x2
的函數(shù)值為y2
∴當y1>y2時,根據(jù)圖象可知x的取值范圍是:0<x<2;

(3)該拋物線上存在4個點,使得每個點與AB構(gòu)成的三角形為等腰三角形.理由如下:
∵A(0,0),B(2,2),
∴AB=2
2

根據(jù)題意,可設(shè)P(x,
1
2
x2).
①當PA=PB時,點P是線段AB的中垂線與拋物線的交點.
易求線段AB的中垂線的解析式為y=-x+2,
y=-x+2
y=
1
2
x2

解得,
x1=-
5
-1
y1=3+
5
x2=
5
-1
y2=3-
5
,
∴P1(-
5
-1,3+
5
),P2
5
-1,3-
5
);
②當PA=AB時,根據(jù)拋物線的對稱性知,點P與點B關(guān)于y軸對稱,即P3(-2,2);
③當AB=PB時,點P4的位置如圖所示.
綜上所述,符號條件的點P有4個,其中P1(-
5
-1,3+
5
),P2
5
-1,3-
5
),P3(-2,2).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點M在第一象限,拋物線與x軸相交于A、B兩點(點A在點B的左邊),與y軸交與點C,O為坐標原點,如果△ABM是直角三角形,AB=2,OM=
5

(1)求點M的坐標;
(2)求拋物線y=ax2+bx+c的解析式;
(3)在拋物線的對稱軸上是否存在點P,使得△PAC為直角三角形?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

丁丁推鉛球的出手高度為1.6m,在如圖所示的拋物線y=-0.1(x-k)2+2.5上,求鉛球的落點與丁丁的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

學校大門如圖所示是一拋物線形水泥建筑物,大門的地面寬度為8米,兩側(cè)距地4米高處各有一掛校名橫匾用的鐵環(huán),兩鐵環(huán)的水平距離為6米,則該校門的高度(精確到0.1米)為(  )
A.8.9米B.9.1米C.9.2米D.9.3米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標;
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對稱軸過C點,頂點在⊙C上,與y軸交點為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=kx2+2kx-3k,交x軸于A、B兩點(A在B的左邊),交y軸于C點,且y有最大值4.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點P,使△PBC是直角三角形?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)點D的坐標為(-2,0).問:直線AC上是否存在點F,使得△ODF是等腰三角形?若存在,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2-2ax+3的圖象與x軸交于點A,點B,與y軸交于點C,其頂點為D,直線DC的函數(shù)關(guān)系式為y=kx+b,又tan∠OBC=1.
(1)求二次函數(shù)的解析式和直線DC的函數(shù)關(guān)系式;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2-4x+c的圖象經(jīng)過點A和點B.
(1)求該二次函數(shù)的表達式;
(2)寫出該拋物線的對稱軸及頂點坐標.

查看答案和解析>>

同步練習冊答案