已知:如圖,把矩形OCBA放置于直角坐標(biāo)系中,OC=3,BC=2,取AB的中點(diǎn)M,連結(jié)MC,把△MBC沿x軸的負(fù)方向平移OC的長度后得到△DAO.
(1)直接寫出點(diǎn)D的坐標(biāo);
(2)已知點(diǎn)B與點(diǎn)D在經(jīng)過原點(diǎn)的拋物線上,點(diǎn)P在第一象限內(nèi)的該拋物線上移動(dòng),過點(diǎn)P作PQ⊥x軸于點(diǎn)Q,連結(jié)OP.若以O(shè)、P、Q為頂點(diǎn)的三角形與△DAO相似,試求出點(diǎn)P的坐標(biāo).
(1)∵四邊形OCBA是矩形,
∴AB=OC=3,OA=BC=2,∠B=90°.
∵M(jìn)是AB的中點(diǎn),
∴AM=MB=
1
2
AB=
3
2

∵把△MBC沿x軸的負(fù)方向平移OC的長度后得到△DAO,
∴DA=MB=
3
2
,∠DAO=∠B=90°,
∴點(diǎn)D的坐標(biāo)為(-
3
2
,2);

(2)∵OC=3,BC=2,∴B(3,2).
∵拋物線經(jīng)過原點(diǎn),
∴設(shè)拋物線的解析式為y=ax2+bx(a≠0),
又拋物線經(jīng)過點(diǎn)B(3,2)與點(diǎn)D(-
3
2
,2),
9a+3b=2
9
4
a-
3
2
b=2
,解得:
a=
4
9
b=-
2
3
,
∴拋物線的解析式為y=
4
9
x2-
2
3
x.
∵點(diǎn)P在拋物線上,
∴設(shè)點(diǎn)P的坐標(biāo)為(x,
4
9
x2-
2
3
x).
分兩種情況:
(i)若△PQO△DAO,則
PQ
DA
=
QO
AO
,
4
9
x2-
2
3
x
3
2
=
x
2
,解得:x1=0(舍去),x2=
51
16
,
∴點(diǎn)P的坐標(biāo)為(
51
16
153
64
);
(ii)若△OQP△DAO,則
OQ
DA
=
PQ
AO
,
x
3
2
=
4
9
x2-
2
3
x
2
,解得:x1=0(舍去),x2=
9
2

∴點(diǎn)P的坐標(biāo)為(
9
2
,6).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

丁丁推鉛球的出手高度為1.6m,在如圖所示的拋物線y=-0.1(x-k)2+2.5上,求鉛球的落點(diǎn)與丁丁的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=kx2+2kx-3k,交x軸于A、B兩點(diǎn)(A在B的左邊),交y軸于C點(diǎn),且y有最大值4.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點(diǎn)P,使△PBC是直角三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(-3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)D的坐標(biāo)為(-2,0).問:直線AC上是否存在點(diǎn)F,使得△ODF是等腰三角形?若存在,請直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與x軸交于A(-1,0)、E(5,0)兩點(diǎn),與y軸交于點(diǎn)B(0,5).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a>0)的圖象經(jīng)過點(diǎn)B(14,0)和C(0,-8),對稱軸為x=4.
(1)求該拋物線的解析式;
(2)點(diǎn)D在線段AB上且AD=AC,若動(dòng)點(diǎn)P從A出發(fā)沿線段AB以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),同時(shí)另一動(dòng)點(diǎn)Q以某一速度從C出發(fā)沿線段CB勻速運(yùn)動(dòng),問是否存在某一時(shí)刻,使線段PQ被直線CD垂直平分?若存在,請求出此時(shí)的時(shí)間t(秒)和點(diǎn)Q的運(yùn)動(dòng)速度;若不存在,請說明理由;
(3)在(2)的結(jié)論下,直線x=1上是否存在點(diǎn)M使△MPQ為等腰三角形?若存在,請求出所有點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2-2ax+c-1的頂點(diǎn)在直線y=-
8
3
x+8
上,與x軸相交于B(α,0)、C(β,0)兩點(diǎn),其中α<β,且α22=10.
(1)求這個(gè)拋物線的解析式;
(2)設(shè)這個(gè)拋物線與y軸的交點(diǎn)為P,H是線段BC上的一個(gè)動(dòng)點(diǎn),過H作HKPB,交PC于K,連接PH,記線段BH的長為t,△PHK的面積為S,試將S表示成t的函數(shù);
(3)求S的最大值,以及S取最大值時(shí)過H、K兩點(diǎn)的直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,經(jīng)過原點(diǎn)的拋物線y=-x2+2mx與x軸的另一個(gè)交點(diǎn)為A.點(diǎn)P在一次函數(shù)y=2x-2m的圖象上,PH⊥x軸于H,直線AP交y軸于點(diǎn)C,點(diǎn)P的橫坐標(biāo)為1.(點(diǎn)C不與點(diǎn)O重合)
(1)如圖1,當(dāng)m=-1時(shí),求點(diǎn)P的坐標(biāo).
(2)如圖2,當(dāng)0<m<
1
2
時(shí),問m為何值時(shí)
CP
AP
=2

(3)是否存在m,使
CP
AP
=2
?若存在,求出所有滿足要求的m的值,并定出相對應(yīng)的點(diǎn)P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2-4x+c的圖象經(jīng)過點(diǎn)A和點(diǎn)B.
(1)求該二次函數(shù)的表達(dá)式;
(2)寫出該拋物線的對稱軸及頂點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案