【題目】關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根、.
(1)求的取值范圍;
(2)是否存在實(shí)數(shù),使方程兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出的值,如不存在,說明理由.
【答案】(1)< 且;(2)不存在.
【解析】
(1)根據(jù)一元二次方程根的定義和判別式的意義得到a﹣1≠0且△>0,然后求出兩個(gè)不等式的公共部分即可;
(2)根據(jù)根與系數(shù)的關(guān)系得到x1+x2==0,解方程,然后根據(jù)(1)中的條件得到a的值.
(1)Δ=b2-4ac=(2a-4) 2-4(a+1)(a-1)=-16a+20;
∵-16a+20>0,∴a<.
因?yàn)?/span>a≠1,所以a的取值范圍為:a<且a≠1;
(2)不存在.要使方程兩實(shí)數(shù)根互為相反數(shù),所以,∴a=2.
∵a<且a≠1,所以不存在這樣的a.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(1,4),點(diǎn)B(3,2),連接OA,OB.
(1)求直線OB與AB的解析式;
(2)求△AOB的面積.
(3)下面兩道小題,任選一道作答.作答時(shí),請注明題號(hào),若多做,則按首做題計(jì)入總分.
①在y軸上是否存在一點(diǎn)P,使△PAB周長最小.若存在,請直接寫出點(diǎn)P坐標(biāo);若不存在,請說明理由.
②在平面內(nèi)是否存在一點(diǎn)C,使以A,O,C,B為頂點(diǎn)的四邊形是平行四邊形.若存在,請直接寫出點(diǎn)C坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)A的坐標(biāo)為(3,0),頂點(diǎn)B在y軸正半軸上,頂點(diǎn)D在x軸負(fù)半軸上.若拋物線y=-x2-5x+c經(jīng)過點(diǎn)B、C,則菱形ABCD的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù),其中.
(1)若點(diǎn)在y1的圖象上.求a的值:
(2)當(dāng)時(shí).若函數(shù)有最大值2.求y1的函數(shù)表達(dá)式;
(3)對于一次函數(shù),其中,若對- -切實(shí)數(shù)x, 都成立,求a,m需滿足的數(shù)量關(guān)系及 a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),B(b,0),C(b,-2a).且+|b-l|=0.CD∥AB,AD∥BC
(1)直接寫出B、C、D各點(diǎn)的坐標(biāo):B 、C 、D ;
(2)如圖1,P(3,10),點(diǎn)E,M在四邊形ABCD的邊上,且E在第二象限.若△PEM是以PE為直角邊的等腰直角三角形,請直接寫出點(diǎn)E的坐標(biāo),并對其中一種情況計(jì)算說明;
(3)如圖2,F(xiàn)為y軸正半軸上一動(dòng)點(diǎn),過F的直線j∥x軸,BH平分∠FBA交直線j于點(diǎn)H.G為BF上的點(diǎn),且∠HGF=∠FAB,F(xiàn)在運(yùn)動(dòng)中FG的長度是否發(fā)生變化?若變化,求出變化范圍;若不變,求出定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,兩內(nèi)角平分線和相交于點(diǎn).
(1)若,求的度數(shù);
(2)若直線過點(diǎn),與、分別相交于點(diǎn)、,且,求的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC,∠A=36°,AB的中垂線MD交AC于點(diǎn)D,交AB于點(diǎn)M.下列結(jié)論:①BD是∠ABC的平分線;②△BCD是等腰三角形;③DC+BC=AB,正確的有( )
A.3個(gè)B.2個(gè)C.1個(gè)D.0 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弦BD=BA,BE⊥DC交DC的延長線于點(diǎn)E,求證:
(1)∠1=∠BAD;
(2)BE是⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com