【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點A的坐標(biāo)為(3,0),頂點B在y軸正半軸上,頂點D在x軸負(fù)半軸上.若拋物線y=-x2-5x+c經(jīng)過點B、C,則菱形ABCD的面積為_______.
【答案】
【解析】
根據(jù)拋物線的解析式結(jié)合拋物線過點B、C,即可得出點C的橫坐標(biāo),由菱形的性質(zhì)可得出AD=AB=BC=5,再根據(jù)勾股定理可求出OB的長度,套用平行四邊形的面積公式即可得出菱形ABCD的面積.
拋物線的對稱軸為x=-.
∵拋物線y=-x2-5x+c經(jīng)過點B、C,且點B在y軸上,BC∥x軸,
∴點C的橫坐標(biāo)為-5.
∵四邊形ABCD為菱形,
∴AB=BC=AD=5,
∴點D的坐標(biāo)為(-2,0),OA=3.
在Rt△ABC中,AB=5,OA=3,
∴OB==4,
∴S菱形ABCD=ADOB=5×4=20.
故答案為:20.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是BC邊上的高,點E、F是AD的三等分點,若AD=6cm,CD=3cm,則圖中陰影部分的面積是____cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計算結(jié)果精確到0.1m,參考數(shù)據(jù)sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
(1)當(dāng)?shù)醣鄣撞緼與貨物的水平距離AC為5m時,吊臂AB的長為 m.
(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,且AG=AB、CG的延長線交BA的延長線于點F,連接FD.試探究當(dāng)∠BCD= °時,四邊形ACDF是矩形,證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的頂點C在正方形AEFG的邊AE上,AB=2,AE=,則點G 到BE的距離是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°后得到△AB′C′(點B的對應(yīng)點是點B′,點C的對應(yīng)點是點C′),連接CC′.若∠CC′B′=32°,則∠B的大小是( )
A.32°B.64°C.77°D.87°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.
(1)作△ABC關(guān)于點C成中心對稱的△A1B1C1,并直接寫出A1、B1、C1各點的坐標(biāo);
(2)將△A1B1C1向右平移4個單位,作出平移后的△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的方程有兩個不相等的實數(shù)根、.
(1)求的取值范圍;
(2)是否存在實數(shù),使方程兩實數(shù)根互為相反數(shù)?如果存在,求出的值,如不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形MNPQ網(wǎng)格中,每個小方格的邊長都相等,正方形ABCD的頂點在正方形MNPQ的4條邊的小方格頂點上.
(1)設(shè)正方形MNPQ網(wǎng)格內(nèi)的每個小方格的邊長為1,求:正方形ABCD的面積;
(2)①在圖2中畫出以AB為一條直角邊的等腰直角△ABC,且點C在小正方形的頂點上;
②在圖2中畫出以AB為一邊的菱形ABDE,且點D和點E均在小正方形的頂點上,菱形ABDE的面積為15,連接CE,請直接寫出線段CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com