【題目】如圖,長(zhǎng)方形ABCD中,點(diǎn)P沿著邊按B→C→D→A方向運(yùn)動(dòng),開(kāi)始以每秒m個(gè)單位勻速運(yùn)動(dòng)、a秒后變?yōu)槊棵?/span>2個(gè)單位勻速運(yùn)動(dòng),b秒后恢復(fù)原速勻速運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,△ABP的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系如圖所示.
(1)直接寫(xiě)出長(zhǎng)方形的長(zhǎng)和寬;
(2)求m,a,b的值;
(3)當(dāng)P點(diǎn)在AD邊上時(shí),直接寫(xiě)出S與t的函數(shù)解析式.
【答案】(1),;
(2) , ,;
(3)當(dāng)時(shí),,
當(dāng)11≤t≤13時(shí),.
【解析】
(1)由圖象可知,CD的長(zhǎng)度,當(dāng)t=6時(shí),,求出BC的長(zhǎng);
(2)當(dāng)時(shí),,從而求得b的值,而得出a和m的值,;
(3)設(shè),根據(jù)函數(shù)圖象是過(guò)點(diǎn)(8,16),(11,4),代入即可認(rèn)得出答案.
(1)∵當(dāng)時(shí),S的值不變,即點(diǎn)P在CD上,速度為每秒2個(gè)單位勻速運(yùn)動(dòng),
∴,
由圖像可知P在CD上時(shí),,
即:,
∴ ,
(2)
如圖示,當(dāng) 時(shí),p運(yùn)動(dòng)到E點(diǎn),則有,
根據(jù)圖像可得:
解得: ,
∴,
∴ ,
并且根據(jù)題意有:,
∴ ,
(3)當(dāng)時(shí),依題意得:
化簡(jiǎn)得:,
當(dāng)11≤t≤13時(shí),由(2)得:
化簡(jiǎn)得:
綜上所述: 當(dāng)時(shí), ,
當(dāng)11≤t≤13時(shí),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,如楊輝三角就是一例.如圖,這個(gè)三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個(gè)數(shù)均為其上方左右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開(kāi)式(按a的次數(shù)降冪排列)的系數(shù)規(guī)律例如,在三角形中第一行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)(a+b)2=a2+2ab+b2展開(kāi)式中的系數(shù);第四行的四個(gè)數(shù)1,3,3,1,恰好對(duì)應(yīng)著(a+b)3=a3+3ab+3ab2+b3展開(kāi)式中的系數(shù).結(jié)合對(duì)楊輝三角的理解完成以下問(wèn)題
(1)(a+b)2展開(kāi)式a2+2ab+b2中每一項(xiàng)的次數(shù)都是 次;
(a+b)3展開(kāi)式a3+3a2b+3ab2+b3中每一項(xiàng)的次數(shù)都是 次;
那么(a+b)n展開(kāi)式中每一項(xiàng)的次數(shù)都是 次.
(2)寫(xiě)出(a+1)4的展開(kāi)式 .
(3)拓展應(yīng)用:計(jì)算(x+1)5+(x﹣1)6+(x+1)7的結(jié)果中,x5項(xiàng)的系數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知分式:
(1)化簡(jiǎn)這個(gè)分式
(2)把分式A化簡(jiǎn)結(jié)果的分子與分母同時(shí)加上3后得到分式B,問(wèn):當(dāng)a>2時(shí),分式B的值較原來(lái)分式A的值是變大了還是變小了?試說(shuō)明理由。
(3)若A的值是整數(shù),且a也為整數(shù),求出所有符合條件a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)的圖象的一支在平面直角坐標(biāo)系中的位置如圖所示,根據(jù)圖象回答下列問(wèn)題:
(1)圖象的另一支在第 象限;在每個(gè)象限內(nèi),y隨x的增大而 ;
(2)若此反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)(-2,3),求m的值.點(diǎn)A(-5,2)是否在這個(gè)函數(shù)圖象上?點(diǎn)B(-3,4)呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延長(zhǎng)線于E,∠1=∠2.
求證:AD平分∠BAC,填寫(xiě)分析和證明中的空白.
證明:∵AD⊥BC,EF⊥BC(已知)
∴______∥______(______)
∴______=______(兩直線平行,內(nèi)錯(cuò)角相等)
______=______(兩直線平行,同位角相等)
∵______(已知),∴______
即AD平分∠BAC(______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方體敞口玻璃罐,長(zhǎng)、寬、高分別為16 cm、6 cm和6 cm,在罐內(nèi)點(diǎn)E處有一小塊餅干碎末,此時(shí)一只螞蟻正好在罐外壁,在長(zhǎng)方形ABCD中心的正上方2 cm處,則螞蟻到達(dá)餅干的最短距離是多少cm.( )
A. 7B.
C. 24D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC是等腰三角形,動(dòng)點(diǎn)P在斜邊AB所在的直線上,以PC為直角邊作等腰三角形PCQ,其中∠PCQ=90°,探究并解決下列問(wèn)題:
(1)如圖①,若點(diǎn)P在線段AB上,且AC=1+,PA=,則:
①線段PB= ,PC= ;
②猜想:PA2,PB2,PQ2三者之間的數(shù)量關(guān)系為 ;
(2)如圖②,若點(diǎn)P在AB的延長(zhǎng)線上,在(1)中所猜想的結(jié)論仍然成立,請(qǐng)你利用圖②給出證明過(guò)程;
(3)若動(dòng)點(diǎn)P滿足,求的值.(提示:請(qǐng)利用備用圖進(jìn)行探求)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班級(jí)在探究“將軍飲馬問(wèn)題”時(shí)抽象出數(shù)學(xué)模型:
直線l同旁有兩個(gè)定點(diǎn)A、B,在直線上存在點(diǎn)P,使得PA+PB的值最小.解法:如圖1,作點(diǎn)A關(guān)于直線的對(duì)稱(chēng)點(diǎn),連接,則與直線l的交點(diǎn)即為P,且PA+PB的最小值為.
請(qǐng)利用上述模型解決下列問(wèn)題:
(1)幾何應(yīng)用:如圖2,△ABC中,∠C=90°,AC=BC=2,E是AB的中點(diǎn),P是BC邊上的一動(dòng)點(diǎn),則PA+PE的最小值為 ;
(2)代數(shù)應(yīng)用:求代數(shù)式+ (0≤x≤3)的最小值.
(3)幾何拓展:如圖3,△ABC中,AC=2,∠A=30°,若在AB、AC上各取一點(diǎn)M、N使BM+MN的值最小,最小值是 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料,并解決問(wèn)題:
如圖等邊內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)A、B、C的距離分別為3,4,5,求的度數(shù).為了解決本題,我們可以將繞頂點(diǎn)A旋轉(zhuǎn)到處,此時(shí)≌,這樣就可以利用旋轉(zhuǎn)變換,將三條線段PA、PB、PC轉(zhuǎn)化到一個(gè)三角形中,從而求出______;
基本運(yùn)用
請(qǐng)你利用第題的解答思想方法,解答下面問(wèn)題:已知如圖,中,,,E、F為BC上的點(diǎn)且,求證:;
能力提升
如圖,在中,,,,點(diǎn)O為內(nèi)一點(diǎn),連接AO,BO,CO,且,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com