【題目】某班級(jí)在探究將軍飲馬問(wèn)題時(shí)抽象出數(shù)學(xué)模型:

直線l同旁有兩個(gè)定點(diǎn)AB,在直線上存在點(diǎn)P,使得PAPB的值最。夥ǎ喝鐖D1,作點(diǎn)A關(guān)于直線的對(duì)稱點(diǎn),連接,則與直線l的交點(diǎn)即為P,且PAPB的最小值為

請(qǐng)利用上述模型解決下列問(wèn)題:

1)幾何應(yīng)用:如圖2,ABC中,∠C90°ACBC2,EAB的中點(diǎn),PBC邊上的一動(dòng)點(diǎn),則PAPE的最小值為

2)代數(shù)應(yīng)用:求代數(shù)式 (0≤x≤3)的最小值.

3)幾何拓展:如圖3,ABC中,AC2,∠A30°,若在AB、AC上各取一點(diǎn)M、N使BMMN的值最小,最小值是 ;

【答案】1.25.(3).

【解析】

1)根據(jù)軸對(duì)稱-最短路線問(wèn)題解答;

2)作點(diǎn)A關(guān)于BC的對(duì)稱點(diǎn)D,連接EDBCP,則PA+PE的值最小,連接BD,根據(jù)勾股定理求出DE即可.

3)設(shè)點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)為B′,根據(jù)垂線段最短及兩點(diǎn)之間,線段最短可知當(dāng)B′M、N三點(diǎn)共線且B′NAB時(shí)BM+MN的值最小.

1

如圖,PAPE的最小值為A’E的長(zhǎng)度

作EF⊥AC,∵EAB的中點(diǎn)

∴EF= ,

.

(2)構(gòu)造圖形如圖所示,

其中:AB3,AC1,DB3,APxCAABA,DBABB

PCPD

∴所求的最小值就是求PCPD的最小值.

作點(diǎn)C關(guān)于AB的對(duì)稱點(diǎn)C',過(guò)C' C' E垂直DB的延長(zhǎng)線于E

C' EAB3,DE314,C' D5

∴所求代數(shù)式的最小值是5

(3)作點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B′,過(guò)B′B′NABN,交ACM

此時(shí)BM+MN的值最。BM+MN=B′N

理由:如圖1,在AC上任取一點(diǎn)M1(不與點(diǎn)M重合),

AB上任取一點(diǎn)N1,連接B′M1、BM1、M1N1、B′N1

∵點(diǎn)B′與點(diǎn)B關(guān)于AC對(duì)稱,

BM1=B′M1,

BM1+M1N1=B′M1+M1N1B′N1

又∵B′N1B′N,BM+MN=B′N,

BM1+M1N1BM+MN

計(jì)算:如圖2

∵點(diǎn)B′與點(diǎn)B關(guān)于AC對(duì)稱,

AB′=AB,

又∵∠BAC=30°,

∴∠B′AB=60°

∴△B′AB是等邊三角形.

B′B=AB=2,∠B′BN=60°

又∵B′NAB,

B′N=B′Bsin60°=

BM+MN的最小值是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B在線段AC上,點(diǎn)E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點(diǎn)。試探索BM和BN的關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形ABCD中,點(diǎn)P沿著邊按BCDA方向運(yùn)動(dòng),開始以每秒m個(gè)單位勻速運(yùn)動(dòng)、a秒后變?yōu)槊棵?/span>2個(gè)單位勻速運(yùn)動(dòng),b秒后恢復(fù)原速勻速運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,△ABP的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系如圖所示.

1)直接寫出長(zhǎng)方形的長(zhǎng)和寬;

2)求ma,b的值;

3)當(dāng)P點(diǎn)在AD邊上時(shí),直接寫出St的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,ABAD,點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B恰好落在CD上,若∠BAD110°,則∠ACB的度數(shù)為( )

A.40°B.35°C.60°D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李克強(qiáng)總理說(shuō):一個(gè)國(guó)家養(yǎng)成全民閱讀習(xí)慣非常重要我希望全民閱讀能夠形成一種氛圍,無(wú)處不在.為了響應(yīng)國(guó)家的號(hào)召,某希望學(xué)校的全體師生掀起了閱讀的熱潮.下面是該校三個(gè)年級(jí)的學(xué)生人數(shù)分布扇形統(tǒng)計(jì)圖與學(xué)生在4月份閱讀課外書籍人次的統(tǒng)計(jì)圖表,其中七年級(jí)的學(xué)生人數(shù)為240人.請(qǐng)解答下列問(wèn)題:

圖書種類

頻數(shù)

頻率

科普書籍

A

B

文學(xué)

1200

C

漫畫叢書

D

0.35

其他

200

0.05

(1)該校七年級(jí)學(xué)生人數(shù)所在扇形的圓心角為______°,該校的學(xué)生總?cè)藬?shù)為______人;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)為了鼓勵(lì)學(xué)生讀書,學(xué)校決定在青年節(jié)舉行兩場(chǎng)讀書報(bào)告會(huì).報(bào)告會(huì)的內(nèi)容從科普書籍”“文學(xué)”“漫畫叢書”“其他中任選兩個(gè).用畫樹狀圖或列表的方法求兩場(chǎng)報(bào)告會(huì)的內(nèi)容恰好是科普書籍漫畫叢書的概率.(科普書籍”“文學(xué)”“漫畫叢書”“其他,可以分別用K,W,M,Q來(lái)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)相等的兩個(gè)正方形ABCDOEFG,若將正方形OEFG繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)150°,兩個(gè)正方形的重疊部分四邊形OMCN的面積( )

A. 不變 B. 先增大再減小 C. 先減小再增大 D. 不斷增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)補(bǔ)充完整:

如圖1,在正方形ABCD中,E、F分別為DCBC邊上的點(diǎn),且滿足∠EAF=45°,連結(jié)EF,試說(shuō)明DE+BF=EF

解:將ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到ABG,此時(shí)ABAD重合.由旋轉(zhuǎn)可得AB=AD,GB=ED,∠1=2,∠ABG=D=90°

∴∠ABG+ABF=90°+90°=180°

∴點(diǎn)G、B、F在同一條直線上.

∵∠EAF=45°

∴∠2+3=BAD-EAF=90°-45°=45°

∵∠1=2,

∴∠1+3=45°

∴∠GAF=

又∵AG=AEAF=AF

∴△GAF

=EF

DE+BF=BG+BF=GF=EF

2)類比引申:

如圖2,在四邊形ABCD中,AB=AD,∠BAD=90°,點(diǎn)E、F分別在邊BCCD上,∠EAF=45°,若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系 時(shí),有EF=BE+DF

3)聯(lián)想拓展

如圖3,在ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°,試猜想BDDE、EC滿足的等量關(guān)系,并寫出推理過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=6cm,BC=12cm,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊ABB1cm/s的速度移動(dòng)(不與點(diǎn)B重合),動(dòng)點(diǎn)Q從點(diǎn)B開始沿邊BCC2cm/s的速度移動(dòng)(不與點(diǎn)C重合).如果P,Q分別從A,B同時(shí)出發(fā),當(dāng)四邊形APQC的面積最小時(shí),經(jīng)過(guò)的時(shí)間為(

A. 1 s B. 2 s C. 3 s D. 4 s

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;

(2)過(guò)點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,BC=6, .求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案