【題目】中,,把的各邊進行下列變換:①各邊的長度分別擴大為原來的3倍;②各邊的長度分別縮小為原來的;③各邊的長度分別增加2;④各邊的長度分別平方.其中得到的三角形與相似的有( 。

A.1B.2C.3D.4

【答案】B

【解析】

根據(jù)相似三角形的性質(zhì)對各項進行判斷即可.

解:①各邊的長度分別擴大為原來的3倍,新三角形與△ABC三邊對應之比為3:1,相似,故選項符合題意;

②各邊的長度分別縮小為原來的,新三角形與△ABC三邊對應之比為1:3,相似,故選項符合題意;

③各邊的長度分別增加2,新三角形與△ABC三邊對應之比不相等,不相似,故選項不符合題意;

④各邊的長度分別平方,新三角形與△ABC三邊對應之比不相等,不相似,故選項不符合題意;

∴只有①②滿足,

故選B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A1,1),B4,2),C3,4

1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1;

2)請畫出△ABC關(guān)于原點O成中心對稱的圖形△A2B2C2;

3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關(guān)系?請說明理由;

(3)設(shè)AEm,

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關(guān)系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市精準扶貧工作已經(jīng)進入攻堅階段,貧困的張大爺在某單位的幫扶下,把一片坡地改造后種植了大櫻桃.今年正式上市銷售,在銷售30天中,第一天賣出20千克,為了擴大銷量,在一段時間內(nèi)采取降價措施,每天比前一天多賣出4千克.當售價不變時,銷售量也不發(fā)生變化.已知種植銷售大櫻桃的成本為18元/千克,設(shè)第天的銷售價元/千克,函數(shù)關(guān)系如下表:

表一

天數(shù)

1

2

3

……

……

20

售價(元/千克)

37.5

37

36.5

……

……

28

表二

天數(shù)

21

22

……

……

30

售價(元/千克)

28

28

……

……

28

1)求函數(shù)解析式;

2)求銷售大櫻桃第幾天時,當天的利潤最大?最大利潤是多少?

3)銷售大櫻桃的30天中,當天利潤不低于元的共有多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,以為直徑作⊙,交于點,為弧上一點,連接、,交于點.

(1),求證:為⊙的切線;

(2),求證:平分;

(3)(2)的條件下,若,求⊙的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AB,CD是直徑,BE是切線,B為切點,連接AD,BCBD

1)求證:△ABD≌△CDB;

2)若∠DBE=37°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形ABCD中,AB5,∠B60°,A的半徑為2,B的半徑為3,點E、F分別為A、B上的動點,點PDC邊上的動點,則PE+PF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是兩條筆直的公路,點上的一個超市,現(xiàn)在想建一個服務(wù)區(qū),要求到兩條公路的距離相等,且服務(wù)區(qū)到超市的距離最近,求作這個服務(wù)區(qū).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店購進600個旅游紀念品,進價為每個6元,第一周以每個10元的價格售出200個,第二周若按每個10元的價格銷售仍可售出200個,但商店為了適當增加銷量,決定降價銷售(根據(jù)市場調(diào)查,單價每降低1元,可多售出50個,但售價不得低于進價),單價降低x元銷售銷售一周后,商店對剩余旅游紀念品清倉處理,以每個4元的價格全部售出,如果這批旅游紀念品共獲利1250元,問第二周每個旅游紀念品的銷售價格為多少元?

查看答案和解析>>

同步練習冊答案