【題目】如圖,中,以為直徑作⊙,交于點(diǎn)為弧上一點(diǎn),連接、、,交于點(diǎn).

(1),求證:為⊙的切線;

(2),求證:平分;

(3)(2)的條件下,若,求⊙的半徑.

【答案】1)詳見解析;(2)詳見解析;(3.

【解析】

1)根據(jù)AB為⊙直徑,得出=90°,即°,,,推出,即°,

所以==90°,得出AC為⊙的切線;(2)證明 得到,因?yàn)?/span>,所以,即可得到AE平分;(3)過點(diǎn)FFHABH可證,可得AH=AD=4,FH=DF=2;可證;BH=x,則BD=2x,BF=2x-2,利用勾股定理可得,;解得BH=,AB=BH+AH=,由AO=AB=,即可得⊙的半徑.

1)證明:∵AB為⊙直徑,

=90°,

°,

,,

,

°,

°,

AC為⊙的切線;

(2)證明:∵,

;

;

,

,

;

AE平分.

3)解:過點(diǎn)FFHABH.

°;

又∵,AF=AF,

AH=AD=4,FH=DF=2;

°,,

,

設(shè)BH=x,則BD=2x,BF=2x-2,

;

x=0()x=

BH=,AB=BH+AH=;

AO=AB=

∴⊙的半徑為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).

(1)求yx之間的函數(shù)關(guān)系式;

(2)直接寫出當(dāng)x>0時(shí),不等式x+b的解集;

(3)若點(diǎn)Px軸上,連接APABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)在正方形的對(duì)角線上,正方形的邊長(zhǎng)是,的兩條直角邊分別交邊于點(diǎn)

1)操作發(fā)現(xiàn):如圖2,固定點(diǎn),使繞點(diǎn)旋轉(zhuǎn),當(dāng)時(shí),四邊形是正方形.

填空:①當(dāng)時(shí),四邊形的邊長(zhǎng)是_____

②當(dāng)是正實(shí)數(shù))時(shí),四邊形的面積是______;

2)猜想論證:如圖3,將四邊形的形狀改變?yōu)榫匦危?/span>,,點(diǎn)在矩形的對(duì)角線,的兩條直角邊分別交邊于點(diǎn),固定點(diǎn),使繞點(diǎn)旋轉(zhuǎn),則______;

3)拓展探究:如圖4,當(dāng)四邊形滿足條件:,,時(shí),點(diǎn)在對(duì)角線上,分別交邊于點(diǎn),固定點(diǎn),使繞點(diǎn)旋轉(zhuǎn),請(qǐng)?zhí)骄?/span>的值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】外線投籃是籃球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一,下列圖表中數(shù)據(jù)是甲、乙、丙三人每人十次投籃測(cè)試的成績(jī).測(cè)試規(guī)則為連續(xù)投籃十個(gè)球?yàn)橐淮,投進(jìn)籃筐一個(gè)球記為1分.

運(yùn)動(dòng)員甲測(cè)試成績(jī)表

測(cè)試序號(hào)

1

2

3

4

5

6

7

8

9

10

成績(jī)(分)

7

6

8

7

7

5

8

7

8

7

1)寫出運(yùn)動(dòng)員乙測(cè)試成績(jī)的眾數(shù)和中位數(shù);

2)在他們?nèi)酥羞x擇一位投籃成績(jī)優(yōu)秀且較為穩(wěn)定的選手作為中鋒,你認(rèn)為選誰(shuí)更合適?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的最高點(diǎn)的縱坐標(biāo)是2

1)求拋物線的表達(dá)式;

2)將拋物線在之間的部分記為圖象,將圖象沿直線x=1翻折,翻折后圖象記為,圖象組成G,直線:和圖象Gx軸上方的部分有兩個(gè)公共點(diǎn),求k的取值范圍;

3)直線:與圖象Gx軸上方的部分分別交于A、M、P、Q四點(diǎn),若AM=2PQ,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,把的各邊進(jìn)行下列變換:①各邊的長(zhǎng)度分別擴(kuò)大為原來的3倍;②各邊的長(zhǎng)度分別縮小為原來的;③各邊的長(zhǎng)度分別增加2;④各邊的長(zhǎng)度分別平方.其中得到的三角形與相似的有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點(diǎn)E,點(diǎn)G在直徑DF的延長(zhǎng)線上,∠D=∠G30°

1)判斷CG與圓O的關(guān)系,并說明理由;

2)若CD=6,求線段GF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超速行駛被稱為馬路第一殺手為了讓駕駛員自覺遵守交通規(guī)則,湖潯大道公路檢測(cè)中心在一事故多發(fā)地段安裝了一個(gè)測(cè)速儀器,如圖所示,已知檢測(cè)點(diǎn)設(shè)在距離公路10米的A處,測(cè)得一輛汽車從B處行駛到C處所用時(shí)間為1.35秒.已知∠B45°,∠C30°

1)求B,C之間的距離(結(jié)果保留根號(hào));

2)如果此地限速為70km/h,那么這輛汽車是否超速?請(qǐng)說明理由.(參考數(shù)據(jù);≈1.7≈1.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球1個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為

1)求袋子中白球的個(gè)數(shù)

2)隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,請(qǐng)用畫樹狀圖或列表的方法,求兩次都摸到白球的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案