【題目】已知:點(diǎn)CA、D在同一條直線上,∠ABC=∠ADE=α,線段 BDCE交于點(diǎn)M

(1)如圖1,若AB=AC,AD=AE

①問線段BDCE有怎樣的數(shù)量關(guān)系?并說明理由;②求∠BMC的大。ㄓα表示);

(2)如圖2,若AB= BC=kAC,AD =ED=kAE 則線段BDCE的數(shù)量關(guān)系為 ,∠BMC= (用α表示);

(3)在(2)的條件下,把△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)180°,在備用圖中作出旋轉(zhuǎn)后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡),連接 EC并延長交BD于點(diǎn)M.則∠BMC= (用α表示).

【答案】(1)①BD=CE,理由見解析,②180°-2α′;(2)BD=kCE,;(3)畫圖見解析,∠BMC=

【解析】分析:(1①先根據(jù)等腰三角形等角對(duì)等邊的性質(zhì)及三角形內(nèi)角和定理得出∠DAE=BAC,則∠BAD=CAE,再根據(jù)SAS證明ABD≌△ACE,從而得出BD=CE②先由全等三角形的對(duì)應(yīng)角相等得出∠BDA=CEA,再根據(jù)三角形的外角性質(zhì)即可得出∠BMC=DAE=180°-2α;(2)先根據(jù)等腰三角形等角對(duì)等邊的性質(zhì)及三角形內(nèi)角和定理得出∠DAE=BAC=90°-α,則∠BAD=CAE,再由AB=kAC,AD=kAE,得出ABAC=ADAE=k,則根據(jù)兩邊對(duì)應(yīng)成比例,且夾角相等的兩三角形相似證出ABD∽△ACE,得出BD=kCE,BDA=CEA,然后根據(jù)三角形的外角性質(zhì)即可得出∠BMC=DAE=90°-α;(3)先在備用圖中利用SSS作出旋轉(zhuǎn)后的圖形,再根據(jù)等腰三角形等角對(duì)等邊的性質(zhì)及三角形內(nèi)角和定理得出∠DAE=BAC=90°-α,由AB=kAC,AD=kAE,得出ABAC=ADAE=k,從而證出ABD∽△ACE,得出∠BDA=CEA,然后根據(jù)三角形的外角性質(zhì)即可得出∠BMC=90°+α

本題解析(1)①BD=CE,∵AD=AE∴∠AED=∠ADE=α

∴∠DAE=180°-2∠ADE=180°-2α,同理可得:∠BAC=180°-2α

∴∠DAE =∠BAC∴∠DAE+∠BAE =∠BAC+∠BAE

即:∠BAD =∠CAE

在△ABD與△ACE中

,

∴△ABD≌△ACE(SAS)

∴BD=CE

② ∵△ABD≌△ACE

∴∠BDA =∠CEA

∵∠BMC=∠MCD+∠MDC

∴∠BMC=∠MCD+∠CEA

=∠EAD=180°-2α′

(2)如圖2.

∵AD=ED,∠ADE=α,

∴∠DAE=

同理可得:∠BAC=90°12α,

∴∠DAE=∠BAC,

∴∠DAE+∠BAE=∠BAC+∠BAE,

即:∠BAD=∠CAE.

∵AB=kAC,AD=kAE,

∴AB:AC=AD:AE=k.

在△ABD與△ACE中,

∵AB:AC=AD:AE=k,∠BDA=∠CEA,

∴△ABD∽△ACE,

∴BD:CE=AB:AC=AD:AE=k,∠BDA=∠CEA,

∴BD=kCE;

∵∠BMC=∠MCD+∠MDC,

∴∠BMC=∠MCD+∠CEA=∠DAE=90°α.

(3)畫圖:∠BMC=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】夏季是垂釣的好季節(jié).一天甲、乙兩人到松花江的處釣魚,突然發(fā)現(xiàn)在處有一人不慎落入江中呼喊救命.如圖,在處測(cè)得處在的北偏東方向,緊急關(guān)頭,甲、乙二人準(zhǔn)備馬上救人,只見甲馬上從處跳水游向處救人;此時(shí)乙從沿岸邊往正東方向奔跑40米到達(dá)處,再從處下水游向處救人,已知處在的北偏東方向上,且甲、乙二人在水中游進(jìn)的速度均為1/秒,乙在岸邊上奔跑的速度為8/秒.(注:水速忽略不計(jì))

1)求、的長.

2)試問甲、乙二人誰能先救到人,請(qǐng)通過計(jì)算說明理由.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】福州電信公司開設(shè)了A、B兩種市內(nèi)移動(dòng)通信業(yè)務(wù):A種使用者每月需繳18元月租費(fèi),然后每通話1分鐘,再付話費(fèi)0.1元;B種使用者不繳月租費(fèi),每通話1分鐘,付話費(fèi)0.3元.若一個(gè)月內(nèi)通話時(shí)間為x分鐘,A、B兩種的費(fèi)用分別為元.

1)試分別寫出x之間的函數(shù)關(guān)系式;

2)每月通話時(shí)間為多長時(shí),開通A種業(yè)務(wù)和B種業(yè)務(wù)費(fèi)用一樣.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長是1),ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問題:

1)作出△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的AB1C1

2)作出AB1C1關(guān)于原點(diǎn)O成中心對(duì)稱的A1B2C2

3)請(qǐng)直接寫出以A1、B2C2為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將1、、三個(gè)數(shù)按圖中方式排列,若規(guī)定(a,b)表示第a排第b列的數(shù),則(93)與(2019,2019)表示的兩個(gè)數(shù)的積是( 。

A.1B.2C.3D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了慶祝即將到來的2017年元旦,某校舉行了書法比賽,賽后整理參賽同學(xué)的成績,并制作成圖表如下:

分?jǐn)?shù)段

頻數(shù)

頻率

60≤x<70

30

0.15

70≤x<80

m

0.45

80≤x<90

60

n

90≤x≤100

20

0.1

請(qǐng)根據(jù)以上圖表提供的信息,解答下列問題:

(1)這次共調(diào)查了   名學(xué)生;表中的數(shù)m=   ,n=   

(2)請(qǐng)?jiān)趫D中補(bǔ)全頻數(shù)分布直方圖;

(3)若繪制扇形統(tǒng)計(jì)圖,分?jǐn)?shù)段60≤x<70所對(duì)應(yīng)扇形的圓心角的度數(shù)是   ;

(4)如果比賽成績?cè)?/span>80分以上(含80分)可獲得獎(jiǎng)勵(lì),那么獲獎(jiǎng)概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,二次函數(shù)y=ax2x+c的圖象經(jīng)過點(diǎn)A0,1),B3, ),A點(diǎn)在y軸上,過點(diǎn)BBCx軸,垂足為點(diǎn)C

(1)求直線AB的解析式和二次函數(shù)的解析式;

(2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)NAB上方),過NNP⊥x軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;

(3)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)NAB上方),是否存在點(diǎn)N,使得BMNC相互垂直平分?若存在,求出所有滿足條件的N點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國水資源比較缺乏,人均水量約為世界人均水量的四分之一,其中西北地區(qū)缺水尤為嚴(yán)重.一村民為了蓄水,他把一塊矩形白鐵皮四個(gè)角各切去一個(gè)同樣大小的小正方形后制作一個(gè)無蓋水箱用于接雨水.已知白鐵皮的長為280cm,寬為160cm(如圖).

(1)若水箱的底面積為16000cm2,請(qǐng)求出切去的小正方形邊長;

(2)對(duì)(1)中的水箱,若盛滿水,這時(shí)水量是多少升?(注:1升水=1000cm3水)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DFDC;④tan∠CAD.其中正確的結(jié)論有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案