【題目】已知:點(diǎn)C、A、D在同一條直線上,∠ABC=∠ADE=α,線段 BD、CE交于點(diǎn)M.
(1)如圖1,若AB=AC,AD=AE
①問線段BD與CE有怎樣的數(shù)量關(guān)系?并說明理由;②求∠BMC的大。ㄓα表示);
(2)如圖2,若AB= BC=kAC,AD =ED=kAE 則線段BD與CE的數(shù)量關(guān)系為 ,∠BMC= (用α表示);
(3)在(2)的條件下,把△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)180°,在備用圖中作出旋轉(zhuǎn)后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡),連接 EC并延長交BD于點(diǎn)M.則∠BMC= (用α表示).
【答案】(1)①BD=CE,理由見解析,②180°-2α′;(2)BD=kCE,;(3)畫圖見解析,∠BMC=
【解析】分析:(1)①先根據(jù)等腰三角形等角對(duì)等邊的性質(zhì)及三角形內(nèi)角和定理得出∠DAE=∠BAC,則∠BAD=∠CAE,再根據(jù)SAS證明△ABD≌△ACE,從而得出BD=CE;②先由全等三角形的對(duì)應(yīng)角相等得出∠BDA=∠CEA,再根據(jù)三角形的外角性質(zhì)即可得出∠BMC=∠DAE=180°-2α;(2)先根據(jù)等腰三角形等角對(duì)等邊的性質(zhì)及三角形內(nèi)角和定理得出∠DAE=∠BAC=90°-α,則∠BAD=∠CAE,再由AB=kAC,AD=kAE,得出AB:AC=AD:AE=k,則根據(jù)兩邊對(duì)應(yīng)成比例,且夾角相等的兩三角形相似證出△ABD∽△ACE,得出BD=kCE,∠BDA=∠CEA,然后根據(jù)三角形的外角性質(zhì)即可得出∠BMC=∠DAE=90°-α;(3)先在備用圖中利用SSS作出旋轉(zhuǎn)后的圖形,再根據(jù)等腰三角形等角對(duì)等邊的性質(zhì)及三角形內(nèi)角和定理得出∠DAE=∠BAC=90°-α,由AB=kAC,AD=kAE,得出AB:AC=AD:AE=k,從而證出△ABD∽△ACE,得出∠BDA=∠CEA,然后根據(jù)三角形的外角性質(zhì)即可得出∠BMC=90°+α.
本題解析:(1)①BD=CE,∵AD=AE,∴∠AED=∠ADE=α
∴∠DAE=180°-2∠ADE=180°-2α,同理可得:∠BAC=180°-2α
∴∠DAE =∠BAC∴∠DAE+∠BAE =∠BAC+∠BAE
即:∠BAD =∠CAE
在△ABD與△ACE中
,
∴△ABD≌△ACE(SAS)
∴BD=CE
② ∵△ABD≌△ACE
∴∠BDA =∠CEA
∵∠BMC=∠MCD+∠MDC
∴∠BMC=∠MCD+∠CEA
=∠EAD=180°-2α′
(2)如圖2.
∵AD=ED,∠ADE=α,
∴∠DAE= ,
同理可得:∠BAC=90°12α,
∴∠DAE=∠BAC,
∴∠DAE+∠BAE=∠BAC+∠BAE,
即:∠BAD=∠CAE.
∵AB=kAC,AD=kAE,
∴AB:AC=AD:AE=k.
在△ABD與△ACE中,
∵AB:AC=AD:AE=k,∠BDA=∠CEA,
∴△ABD∽△ACE,
∴BD:CE=AB:AC=AD:AE=k,∠BDA=∠CEA,
∴BD=kCE;
∵∠BMC=∠MCD+∠MDC,
∴∠BMC=∠MCD+∠CEA=∠DAE=90°α.
(3)畫圖:∠BMC=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】夏季是垂釣的好季節(jié).一天甲、乙兩人到松花江的處釣魚,突然發(fā)現(xiàn)在處有一人不慎落入江中呼喊救命.如圖,在處測(cè)得處在的北偏東方向,緊急關(guān)頭,甲、乙二人準(zhǔn)備馬上救人,只見甲馬上從處跳水游向處救人;此時(shí)乙從沿岸邊往正東方向奔跑40米到達(dá)處,再從處下水游向處救人,已知處在的北偏東方向上,且甲、乙二人在水中游進(jìn)的速度均為1米/秒,乙在岸邊上奔跑的速度為8米/秒.(注:水速忽略不計(jì))
(1)求、的長.
(2)試問甲、乙二人誰能先救到人,請(qǐng)通過計(jì)算說明理由.()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】福州電信公司開設(shè)了A、B兩種市內(nèi)移動(dòng)通信業(yè)務(wù):A種使用者每月需繳18元月租費(fèi),然后每通話1分鐘,再付話費(fèi)0.1元;B種使用者不繳月租費(fèi),每通話1分鐘,付話費(fèi)0.3元.若一個(gè)月內(nèi)通話時(shí)間為x分鐘,A、B兩種的費(fèi)用分別為和元.
(1)試分別寫出、與x之間的函數(shù)關(guān)系式;
(2)每月通話時(shí)間為多長時(shí),開通A種業(yè)務(wù)和B種業(yè)務(wù)費(fèi)用一樣.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長是1),△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問題:
(1)作出△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△AB1C1.
(2)作出△AB1C1關(guān)于原點(diǎn)O成中心對(duì)稱的△A1B2C2.
(3)請(qǐng)直接寫出以A1、B2、C2為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將1、、三個(gè)數(shù)按圖中方式排列,若規(guī)定(a,b)表示第a排第b列的數(shù),則(9,3)與(2019,2019)表示的兩個(gè)數(shù)的積是( 。
A.1B.2C.3D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了慶祝即將到來的2017年元旦,某校舉行了書法比賽,賽后整理參賽同學(xué)的成績,并制作成圖表如下:
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x≤100 | 20 | 0.1 |
請(qǐng)根據(jù)以上圖表提供的信息,解答下列問題:
(1)這次共調(diào)查了 名學(xué)生;表中的數(shù)m= ,n= ;
(2)請(qǐng)?jiān)趫D中補(bǔ)全頻數(shù)分布直方圖;
(3)若繪制扇形統(tǒng)計(jì)圖,分?jǐn)?shù)段60≤x<70所對(duì)應(yīng)扇形的圓心角的度數(shù)是 ;
(4)如果比賽成績?cè)?/span>80分以上(含80分)可獲得獎(jiǎng)勵(lì),那么獲獎(jiǎng)概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2﹣x+c的圖象經(jīng)過點(diǎn)A(0,1),B(﹣3, ),A點(diǎn)在y軸上,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C.
(1)求直線AB的解析式和二次函數(shù)的解析式;
(2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)N在AB上方),過N作NP⊥x軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;
(3)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)N在AB上方),是否存在點(diǎn)N,使得BM與NC相互垂直平分?若存在,求出所有滿足條件的N點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國水資源比較缺乏,人均水量約為世界人均水量的四分之一,其中西北地區(qū)缺水尤為嚴(yán)重.一村民為了蓄水,他把一塊矩形白鐵皮四個(gè)角各切去一個(gè)同樣大小的小正方形后制作一個(gè)無蓋水箱用于接雨水.已知白鐵皮的長為280cm,寬為160cm(如圖).
(1)若水箱的底面積為16000cm2,請(qǐng)求出切去的小正方形邊長;
(2)對(duì)(1)中的水箱,若盛滿水,這時(shí)水量是多少升?(注:1升水=1000cm3水)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結(jié)論有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com