【題目】已知關(guān)于x的方程x2-(a+b)x+ab-1=0,x1、x2是此方程的兩個實(shí)數(shù)根,現(xiàn)給出三個結(jié)論:①x1≠x2;②x1x2<ab;③+<a2+b2.則正確結(jié)論的序號是______.(填上你認(rèn)為正確的所有序號)
【答案】①②
【解析】
①利用方程的判別式即可得出結(jié)論;
②根據(jù)兩根之積即可得出結(jié)論;
③利用根與系數(shù)的關(guān)系可以求出x12+x22的值,即可得出結(jié)論.
①∵方程x2﹣(a+b)x+ab﹣1=0中,△=(a+b)2﹣4(ab﹣1)=(a﹣b)2+4>0,∴x1≠x2,故①正確;
②∵x1x2=ab﹣1<ab,故②正確;
③∵x1+x2=a+b,∴x12+x22=(x1+x2)2﹣2x1x2=(a+b)2﹣2ab+2=a2+b2+2>a2+b2,即x12+x22>a2+b2.故③錯誤.
綜上所述:正確的結(jié)論序號是:①②.
故答案為:①②.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以正方形ABCD的邊AB為直徑作⊙O,E是⊙O上的一點(diǎn),EF⊥AB于F,AF>BF,作直線DE交BC于點(diǎn)G.若正方形的邊長為10,EF=4.
(1)分別求AF、BF的長.
(2)求證:DG是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+3x+m-1=0的兩個實(shí)數(shù)根分別為x1,x2.
(1)求m的取值范圍.
(2)若2(x1+x2)+ x1x2+10=0.求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD是平行四邊形,AE∥CF,且分別交對角線BD于點(diǎn)E,F.
(1)求證:△AEB≌△CFD;
(2)連接AF,CE,若∠AFE=∠CFE,求證:四邊形AFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C,E,F,B在同一直線上,點(diǎn)A,D在BC異側(cè),AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=40°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在雙曲線上,AD垂直x軸,垂足為A,點(diǎn)C在AD上,CB平行于x軸交雙曲線于點(diǎn)B,直線AB與y軸交于點(diǎn)F,已知AC:AD=1:3,點(diǎn)C的坐標(biāo)為(3,2).
(1)求該雙曲線的解析式;
(2)求△OFA的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=12cm,CA⊥AB于點(diǎn)A,DB⊥AB于點(diǎn)B,且AC=4cm,點(diǎn)P從點(diǎn)B向點(diǎn)A運(yùn)動,每秒鐘走1cm,點(diǎn)Q從點(diǎn)B向點(diǎn)D運(yùn)動,每秒鐘走2cm,兩點(diǎn)同時出發(fā),運(yùn)動幾秒鐘后,△CPA與△PQB全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:身高在選定標(biāo)準(zhǔn)的±2%范圍之內(nèi)都稱為“普通身高”.為了解某校九年級男生中具有“普通身高”的人數(shù),我們從該校九年級500名男生中隨機(jī)選出10名男生,分別測量出他們的身高(單位:cm)收集并整理統(tǒng)計表:
男生序號 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ |
身高 | 163 | 171 | 173 | 159 | 161 | 174 | 164 | 166 | 169 | 164 |
根據(jù)以上表格信息,解答如下問題:
(1)計算這組數(shù)據(jù)的三個統(tǒng)計量:平均數(shù)、中位數(shù)、眾數(shù);
(2)請你選擇其中一個統(tǒng)計量作為選定標(biāo)準(zhǔn),估計該校九年級男生中具有“普通身高”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com