【題目】如圖,以正方形ABCD的邊AB為直徑作O,E是O上的一點(diǎn),EFAB于F,AFBF,作直線DE交BC于點(diǎn)G.若正方形的邊長(zhǎng)為10,EF=4.

(1)分別求AF、BF的長(zhǎng).

(2)求證:DG是O的切線.

【答案】(1)BF=2,AF=8(2)證明見解析

【解析】

1)已知直徑易知半徑.連接OE,在RtOEF中運(yùn)用勾股定理求OF,再求AF,BF

2)欲證DG為切線,則證OEDG.連接OD,證明△OAD≌△OED即可.已有兩邊對(duì)應(yīng)相等,只需證明DEAD.為此作EHADH,運(yùn)用勾股定理可證.

(1)連接OE,

∵正方形邊長(zhǎng)為10,AB是直徑,

OB=OE=5.

EFAB,EF=4,

OF==3,

BF=2,AF=8;

(2)連接OD,作EHADH點(diǎn).

∵四邊形AFED為直角梯形,

EH=AF=8,HD=10﹣4=6.

DE==10.

AD=DE.

OA=OE,OD公共邊,

∴△OAD≌△OED,

∴∠OED=OAD=90°,

DG是⊙O的切線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,ACB=90°,A=30°,AB的垂直平分線分別交ABAC于點(diǎn)D,E.

(1)求證:AE=2CE;

(2)連接CD,請(qǐng)判斷BCD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,ABBD,sinA=,將ABCD放置在平面直角坐標(biāo)系中,且ADx軸,點(diǎn)D的橫坐標(biāo)為1,點(diǎn)C的縱坐標(biāo)為3,恰有一條雙曲線y=(k>0)同時(shí)經(jīng)過B、D兩點(diǎn),則點(diǎn)B的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC的中點(diǎn),連結(jié)AD,在AD的延長(zhǎng)線上取一點(diǎn)E,連結(jié)BE,CE.

(1)求證:ABE≌△ACE

(2)當(dāng)AEAD滿足什么數(shù)量關(guān)系時(shí),四邊形ABEC是菱形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,二次函數(shù)y=﹣2x2+4x+m的圖象與x軸的一個(gè)交點(diǎn)為A(3,0),另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C.

(1)m的值及點(diǎn)B的坐標(biāo);

(2)△ABC的面積;

(3)該二次函數(shù)圖象上有一點(diǎn)D(x,y),使SABD=SABC,請(qǐng)求出D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線MN與直線PQ垂直相交于點(diǎn)O,點(diǎn)A在射線OP上運(yùn)動(dòng)(點(diǎn)A不與點(diǎn)O重合),點(diǎn)B在射線OM上運(yùn)動(dòng)(點(diǎn)B不與點(diǎn)O重合).

1)如圖1,已知AEBE分別是∠BAO和∠ABO的角平分線,

當(dāng)∠ABO60°時(shí),求∠AEB的度數(shù);

點(diǎn)A、B在運(yùn)動(dòng)的過程中,∠AEB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明變化的情況:若不發(fā)生變化,試求出∠AEB的大小;

2)如圖2,延長(zhǎng)BAG,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線所在的直線分別相交于E、F,在△AEF中,如果有一個(gè)角是另一個(gè)角的3倍,請(qǐng)直接寫出∠ABO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),∠AOB30°,OP8,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),則△PMN周長(zhǎng)的最小值為( 。

A. 5B. 6C. 8D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點(diǎn)D在拋物線上,DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2-(a+b)x+ab-1=0,x1、x2是此方程的兩個(gè)實(shí)數(shù)根,現(xiàn)給出三個(gè)結(jié)論:①x1≠x2;x1x2<ab;<a2+b2.則正確結(jié)論的序號(hào)是______.(填上你認(rèn)為正確的所有序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案