【題目】計(jì)算
(2);
(3) (4);
(5); (6)
【答案】;;;;;;
【解析】
利用實(shí)數(shù)的運(yùn)算法則和整式的運(yùn)算法則即可求出答案.
(1)原式利用減法法則變形,計(jì)算即可得到結(jié)果;
(2)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘除運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果;
(3)根據(jù)運(yùn)算順序,先計(jì)算括號(hào)里邊的乘方運(yùn)算,然后根據(jù)減法法則計(jì)算括號(hào)里的被除數(shù),繼而利用異號(hào)兩數(shù)相除的法則:異號(hào)得負(fù),并把絕對(duì)值相除計(jì)算,同時(shí)把第三項(xiàng)中的除數(shù)根據(jù)乘方的意義計(jì)算,再根據(jù)異號(hào)兩數(shù)相除的法則計(jì)算,最后減法運(yùn)算化為加法運(yùn)算后,把互為相反數(shù)的兩數(shù)結(jié)合先計(jì)算,即可求出結(jié)果;
(4)根據(jù)整式的運(yùn)算法則即可求出答案;
(5)先去括號(hào),再合并同類(lèi)項(xiàng);
(6)先去括號(hào),再合并同類(lèi)項(xiàng).
解:原式;
原式;
原式;
原式;
原式;
原式;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣(x+1)(x﹣m)交x軸于A,B兩點(diǎn)(A在B的左側(cè),m>0),交y軸正半軸于點(diǎn)C,過(guò)點(diǎn)C作x軸的平行線(xiàn)交拋物線(xiàn)于另一點(diǎn)E,拋物線(xiàn)的對(duì)稱(chēng)軸交CE于點(diǎn)F,以C為圓心畫(huà)圓,使⊙C經(jīng)過(guò)點(diǎn)(0,2).
(1)直接寫(xiě)出OB,OC的長(zhǎng).(均用含m的代數(shù)式表示)
(2)當(dāng)m>2時(shí),判斷點(diǎn)E與⊙C的位置關(guān)系,并說(shuō)明理由.
(3)當(dāng)拋物線(xiàn)的對(duì)稱(chēng)軸與⊙C相交時(shí),其中下方的交點(diǎn)為D.連結(jié)CD,BD,BC.
①當(dāng)m>3,且C,D,B三點(diǎn)在同一直線(xiàn)上時(shí),求m的值.
②當(dāng)△BCD是以CD為腰的等腰三角形時(shí),求m的值.(直接寫(xiě)出答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為原點(diǎn),A,B為數(shù)軸上兩點(diǎn),AB=15,且OA:OB=2
(1)A,B對(duì)應(yīng)的數(shù)分別為 , .
(2)點(diǎn)A,B分別以2個(gè)單位/秒和5個(gè)單位/秒的速度相向而行,則幾秒后A,B相距1個(gè)單位長(zhǎng)度?
(3)點(diǎn)AB以(2)中的速度同時(shí)向右運(yùn)動(dòng),點(diǎn)P從原點(diǎn)O以4個(gè)單位秒的速度向右運(yùn)動(dòng),是否存在常數(shù)m,使得3AP+2PB﹣mOP為定值?若存在,請(qǐng)求出m值以及這個(gè)定值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用錘子以均勻的力敲擊鐵釘入木板.隨著鐵釘?shù)纳钊耄F釘所受的阻力會(huì)越來(lái)越大,使得每次釘入木板的釘子的長(zhǎng)度后一次為前一次的k倍(0<k<1).已知一個(gè)釘子受擊3次后恰好全部進(jìn)入木板,且第一次受擊后進(jìn)入木板部分的鐵釘長(zhǎng)度是釘長(zhǎng)的 .設(shè)鐵釘?shù)拈L(zhǎng)度為1,那么符合這一事實(shí)的方程是( )
A.
(1+k)2=1
B.
k+ k2=1
C.
+ k+ k2=1
D.
+ (1+k)2=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了深化課程改革,某校積極開(kāi)展校本課程建設(shè),計(jì)劃成立“文學(xué)鑒賞”、“國(guó)際象棋”、“音樂(lè)舞蹈”和“書(shū)法”等多個(gè)社團(tuán),要求每位學(xué)生都自主選擇其中一個(gè)社團(tuán),為此,隨機(jī)調(diào)查了本校部分學(xué)生選擇社團(tuán)的意向.并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表(不完整):
選擇意向 | 文學(xué)鑒賞 | 國(guó)際象棋 | 音樂(lè)舞蹈 | 書(shū)法 | 其他 |
所占百分比 | a | 20% | b | 10% | 5% |
根據(jù)統(tǒng)計(jì)圖表的信息,解答下列問(wèn)題:
(1)求本次抽樣調(diào)查的學(xué)生總?cè)藬?shù)及a、b的值;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有1300名學(xué)生,試估計(jì)全校選擇“音樂(lè)舞蹈”社團(tuán)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,信豐縣某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖所示的兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題
(1)接受問(wèn)卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形圓心角是 度;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生1200人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一種新型娛樂(lè)設(shè)施的示意圖,x軸所在位置記為地面,平臺(tái)AB∥x軸,OA=6米,AB=2米,BC是反比例函數(shù)y= 的圖象的一部分,CD是二次函數(shù)y=﹣x2+mx+n圖象的一部分,連接點(diǎn)C為拋物線(xiàn)的頂點(diǎn),且C點(diǎn)到地面的距離為2米,D點(diǎn)是娛樂(lè)設(shè)施與地面的一個(gè)接觸點(diǎn).
(1)試求k,m,n的值;
(2)試求點(diǎn)B與點(diǎn)D的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】城區(qū)某中學(xué)為形成體育特色,落實(shí)學(xué)生每天小時(shí)的鍛煉時(shí)間,通過(guò)調(diào)查研究,決定在七、八、九年級(jí)分別開(kāi)展跳繩、羽毛球、毽球的健身運(yùn)動(dòng).
國(guó)家規(guī)定初中每班的標(biāo)準(zhǔn)人數(shù)為人,七年級(jí)共有八個(gè)班,各班人數(shù)情況如下表,八年級(jí)學(xué)生人數(shù)是七年級(jí)學(xué)生人數(shù)的倍少人,九年級(jí)學(xué)生人數(shù)的倍剛好是七、八年級(jí)學(xué)生人數(shù)的總和.(注:班表示七年級(jí)一班)
班級(jí) | 班 | 班 | 班 | 班 | 班 | 班 | 班 | 班 |
和每班標(biāo)準(zhǔn) 人數(shù)的差值 |
用含的式子表示該中學(xué)七年級(jí)學(xué)生總數(shù);
學(xué)校決定按每人一根跳繩、一個(gè)毽球,兩人一副羽毛球拍的標(biāo)準(zhǔn),購(gòu)買(mǎi)相應(yīng)的體育器材以滿(mǎn)足學(xué)生鍛煉需要,其中跳繩每根元,毽球每個(gè)元,羽毛球拍每副元.請(qǐng)你計(jì)算當(dāng)時(shí),學(xué)校為落實(shí)小時(shí)體育鍛煉時(shí)間需購(gòu)買(mǎi)器材的費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形ABCD的兩條對(duì)角線(xiàn)分別為6和8,M、N分別是邊BC、CD的中點(diǎn),P是對(duì)角線(xiàn)BD上一點(diǎn),則PM+PN的最小值= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com